
Predicting (Disk Scheduling)
Performance with Virtual Machines

Robert Geist, Zach Jones, James Westall

Clemson University

Motivation

CPSC 822: Operating System Design: Case Study
second level, graduate OS course at Clemson
since 1985: walk through source of a UNIX
derivative (this semester: Linux 2.6.30)
modify schedulers for performance
build new kernels
write drivers for real devices

Motivation

CPSC 822: Operating System Design: Case Study
second level, graduate OS course at Clemson
since 1985: walk through source of a UNIX
derivative (this semester: Linux 2.6.30)
modify schedulers for performance
build new kernels
write drivers for real devices

dedicated hardware required (usually crashed)→
limited enrollment→ waiting list, every semester

Motivation

CPSC 822: Operating System Design: Case Study
second level, graduate OS course at Clemson
since 1985: walk through source of a UNIX
derivative (this semester: Linux 2.6.30)
modify schedulers for performance
build new kernels
write drivers for real devices

dedicated hardware required (usually crashed)→
limited enrollment→ waiting list, every semester

standard evaluation (5 yrs. out):themost valuable
course of educational career (e.g. Satish Dharmaraj)

Virtualization?

a large part of the course could be virtualized
(VMWare, XEN, KVM)

Virtualization?

a large part of the course could be virtualized
(VMWare, XEN, KVM)

oops! two important projects resist this:

Virtualization?

a large part of the course could be virtualized
(VMWare, XEN, KVM)

oops! two important projects resist this:
write a driver for non-trivial graphics card
(interrupts, DMA, buffer handling, mem. map.)

Virtualization?

a large part of the course could be virtualized
(VMWare, XEN, KVM)

oops! two important projects resist this:
write a driver for non-trivial graphics card
(interrupts, DMA, buffer handling, mem. map.)
SeeProc. IBM CASCON 2009, Toronto, CA.

Virtualization?

a large part of the course could be virtualized
(VMWare, XEN, KVM)

oops! two important projects resist this:
write a driver for non-trivial graphics card
(interrupts, DMA, buffer handling, mem. map.)
SeeProc. IBM CASCON 2009, Toronto, CA.
design a new disk scheduler that outperforms
default Linux schedulers

Virtualization?

a large part of the course could be virtualized
(VMWare, XEN, KVM)

oops! two important projects resist this:
write a driver for non-trivial graphics card
(interrupts, DMA, buffer handling, mem. map.)
SeeProc. IBM CASCON 2009, Toronto, CA.
design a new disk scheduler that outperforms
default Linux schedulers

Yeow! How do I measure that?

Goals

provide a method for predicting the performance of
disk scheduling algorithms on real machines using
only their performance on virtual machines

Goals

provide a method for predicting the performance of
disk scheduling algorithms on real machines using
only their performance on virtual machines

provide a new, high-performance, disk scheduling
algorithm as a case study

Goals

provide a method for predicting the performance of
disk scheduling algorithms on real machines using
only their performance on virtual machines

provide a new, high-performance, disk scheduling
algorithm as a case study

describe theiprobe, a key kernel modification tool,
which should have wide application

Background - Kernel Probes

intended as dynamically-loaded debugging tools

Linux kprobe

Background - Kernel Probes

intended as dynamically-loaded debugging tools

Linux kprobe
target instruction, pre-handler, post-handler
save target, replace with breakpoint
upon break:

Background - Kernel Probes

intended as dynamically-loaded debugging tools

Linux kprobe
target instruction, pre-handler, post-handler
save target, replace with breakpoint
upon break:
• pre-handler;
• target (single step mode);
• post-handler;
• resume;

Background - Kernel Probes

Linux jprobe
target function, (second-stage) pre-handler
copy first instruction, replace with breakpoint
upon break:

Background - Kernel Probes

Linux jprobe
target function, (second-stage) pre-handler
copy first instruction, replace with breakpoint
upon break:
• run fixed, first-stage pre-handler:

Background - Kernel Probes

Linux jprobe
target function, (second-stage) pre-handler
copy first instruction, replace with breakpoint
upon break:
• run fixed, first-stage pre-handler:

· copy registers and stack;
· load saved IP with address of ss handler;
· return (passes control to ss handler);

Background - Kernel Probes

Linux jprobe
target function, (second-stage) pre-handler
copy first instruction, replace with breakpoint
upon break:
• run fixed, first-stage pre-handler:

· copy registers and stack;
· load saved IP with address of ss handler;
· return (passes control to ss handler);

• execute second-stage handler;

Background - Kernel Probes

Linux jprobe
target function, (second-stage) pre-handler
copy first instruction, replace with breakpoint
upon break:
• run fixed, first-stage pre-handler:

· copy registers and stack;
· load saved IP with address of ss handler;
· return (passes control to ss handler);

• execute second-stage handler;
• jprobe return (restore stack and state);

Background - Kernel Probes

Linux jprobe
target function, (second-stage) pre-handler
copy first instruction, replace with breakpoint
upon break:
• run fixed, first-stage pre-handler:

· copy registers and stack;
· load saved IP with address of ss handler;
· return (passes control to ss handler);

• execute second-stage handler;
• jprobe return (restore stack and state);
• first instruction in single-step mode;
• remainder of function (empty post-handler);

iprobe

dynamically replace any kernel function!

iprobe

dynamically replace any kernel function!

target function, replacement function

function prototypes must match

built on jprobe framework:

iprobe

dynamically replace any kernel function!

target function, replacement function

function prototypes must match

built on jprobe framework:
custom second-stage pre-handler
custom (non-empty) post-handler

iprobe

copy first instruction, replace with breakpoint

upon break:

iprobe

copy first instruction, replace with breakpoint

upon break:
run jprobe first-stage pre-handler;
execute custom second-stage handler:

iprobe

copy first instruction, replace with breakpoint

upon break:
run jprobe first-stage pre-handler;
execute custom second-stage handler:
• backup saved instruction;
• overwrite saved instruction with no-op;
jprobe return;

iprobe

copy first instruction, replace with breakpoint

upon break:
run jprobe first-stage pre-handler;
execute custom second-stage handler:
• backup saved instruction;
• overwrite saved instruction with no-op;
jprobe return;
first instruction (no-op) in single-step mode;
post-handler:

iprobe

copy first instruction, replace with breakpoint

upon break:
run jprobe first-stage pre-handler;
execute custom second-stage handler:
• backup saved instruction;
• overwrite saved instruction with no-op;
jprobe return;
first instruction (no-op) in single-step mode;
post-handler:
• load IP with replacement function address;
• overwrite no-op with backup copy;
• return;

Background - Disk Scheduling

heavily-loaded system: non-empty queue of pending
disk requests likely; schedule in which order?

Background - Disk Scheduling

heavily-loaded system: non-empty queue of pending
disk requests likely; schedule in which order?

such algorithms studied for decades (at least 4!)

Background - Disk Scheduling

heavily-loaded system: non-empty queue of pending
disk requests likely; schedule in which order?

such algorithms studied for decades (at least 4!)

increasing importance:
20 years ago: CPU speed inµs, disk speed inms

Background - Disk Scheduling

heavily-loaded system: non-empty queue of pending
disk requests likely; schedule in which order?

such algorithms studied for decades (at least 4!)

increasing importance:
20 years ago: CPU speed inµs, disk speed inms
today: CPU speed inns, disk speed still inms

Background - Disk Scheduling

heavily-loaded system: non-empty queue of pending
disk requests likely; schedule in which order?

such algorithms studied for decades (at least 4!)

increasing importance:
20 years ago: CPU speed inµs, disk speed inms
today: CPU speed inns, disk speed still inms
disks are performance bottlenecks

Background - Disk Scheduling

heavily-loaded system: non-empty queue of pending
disk requests likely; schedule in which order?

such algorithms studied for decades (at least 4!)

increasing importance:
20 years ago: CPU speed inµs, disk speed inms
today: CPU speed inns, disk speed still inms
disks are performance bottlenecks

algorithms not constrained to bework-conserving

An Example

SPINDLE
10 6041 9550

An Example

SPINDLE
10 6041 9550

order of arrival is 95, 10, 60, 41 (r/w head at 50)

An Example

SPINDLE
10 6041 9550

order of arrival is 95, 10, 60, 41 (r/w head at 50)

travel time constant per unit distance

An Example

SPINDLE
10 6041 9550

order of arrival is 95, 10, 60, 41 (r/w head at 50)

travel time constant per unit distance

schedule service wait response
95 45 0 45
10 85 45 130
60 50 130 180
41 19 180 199

mean 49.75 88.75 138.50

An Example (Continued)

SPINDLE
10 6041 9550

Greedy orshortest access time first (SATF)schedule:

An Example (Continued)

SPINDLE
10 6041 9550

Greedy orshortest access time first (SATF)schedule:

schedule service wait response
41 9 0 9
60 19 9 28
95 35 28 63
10 85 63 148

mean 37.00 25.00 62.00

An Example (Continued)

SPINDLE
10 6041 9550

SATFoften claimed to be optimal, but ...

An Example (Continued)

SPINDLE
10 6041 9550

SATFoften claimed to be optimal, but ...

schedule service wait response
60 10 0 10
41 19 10 29
10 31 29 60
95 85 60 145

mean 36.25 24.75 61.00

Schedulers Supplied with Linux 2.6

No-op

Anticipatory

Deadline

Completely Fair Queueing

Cache-Aware Table Scheduler (CATS)

separate reads and writes; reads have priority

Cache-Aware Table Scheduler (CATS)

separate reads and writes; reads have priority

writes use CSCAN withrequest coalescing

Cache-Aware Table Scheduler (CATS)

separate reads and writes; reads have priority

writes use CSCAN withrequest coalescing

writes served in bursts (MAX/MIN WRITEDELAY)

Cache-Aware Table Scheduler (CATS)

separate reads and writes; reads have priority

writes use CSCAN withrequest coalescing

writes served in bursts (MAX/MIN WRITEDELAY)

reads usealgorithm Twith request coalescing:

Cache-Aware Table Scheduler (CATS)

separate reads and writes; reads have priority

writes use CSCAN withrequest coalescing

writes served in bursts (MAX/MIN WRITEDELAY)

reads usealgorithm Twith request coalescing:
for any collection ofn requests, find optimal
(minimum response time) completion sequence
in worst-caseO(n2) time

Cache-Aware Table Scheduler (CATS)

separate reads and writes; reads have priority

writes use CSCAN withrequest coalescing

writes served in bursts (MAX/MIN WRITEDELAY)

reads usealgorithm Twith request coalescing:
for any collection ofn requests, find optimal
(minimum response time) completion sequence
in worst-caseO(n2) time
serve first request from optimal list

Cache-Aware Table Scheduler (CATS)

separate reads and writes; reads have priority

writes use CSCAN withrequest coalescing

writes served in bursts (MAX/MIN WRITEDELAY)

reads usealgorithm Twith request coalescing:
for any collection ofn requests, find optimal
(minimum response time) completion sequence
in worst-caseO(n2) time
serve first request from optimal list
re-compute optimal list, if new arrivals

Cache-Aware Table Scheduler (CATS)

separate reads and writes; reads have priority

writes use CSCAN withrequest coalescing

writes served in bursts (MAX/MIN WRITEDELAY)

reads usealgorithm Twith request coalescing:
for any collection ofn requests, find optimal
(minimum response time) completion sequence
in worst-caseO(n2) time
serve first request from optimal list
re-compute optimal list, if new arrivals

out-wait deceptive idleness (5 ms)

Cache-Aware Table Scheduler (CATS)

cache model:

Cache-Aware Table Scheduler (CATS)

cache model: number of segments, sectors per
segment, pre-fetch size (sectors)

Cache-Aware Table Scheduler (CATS)

cache model: number of segments, sectors per
segment, pre-fetch size (sectors)

cache model assumptions:

Cache-Aware Table Scheduler (CATS)

cache model: number of segments, sectors per
segment, pre-fetch size (sectors)

cache model assumptions: fully associative, FIFO
replacement, wrap-around within segments

Cache-Aware Table Scheduler (CATS)

cache model: number of segments, sectors per
segment, pre-fetch size (sectors)

cache model assumptions: fully associative, FIFO
replacement, wrap-around within segments

scheduling:

Cache-Aware Table Scheduler (CATS)

cache model: number of segments, sectors per
segment, pre-fetch size (sectors)

cache model assumptions: fully associative, FIFO
replacement, wrap-around within segments

scheduling:
maintain shadow cache within scheduler
on each dispatch, check entire queue for
predicted cache hit
if predicted hit, schedule immediately

Virtual Performance Throttle

Predict real performance from virtual performance?

Virtual Performance Throttle

Predict real performance from virtual performance?
Useiprobe in virtual SCSI path to force virtual service
times to be proportional to real ones.

Virtual Performance Throttle

Predict real performance from virtual performance?
Useiprobe in virtual SCSI path to force virtual service
times to be proportional to real ones.

real service time model:Xr = Rr/2 + Sr(dr/Dr)
Rr is rotation time,Sr is maximum seek time,Dr is
maximum seek distance

Virtual Performance Throttle

Predict real performance from virtual performance?
Useiprobe in virtual SCSI path to force virtual service
times to be proportional to real ones.

real service time model:Xr = Rr/2 + Sr(dr/Dr)
Rr is rotation time,Sr is maximum seek time,Dr is
maximum seek distance

force virtual service timekXr, wherek is constant

Virtual Performance Throttle

Predict real performance from virtual performance?
Useiprobe in virtual SCSI path to force virtual service
times to be proportional to real ones.

real service time model:Xr = Rr/2 + Sr(dr/Dr)
Rr is rotation time,Sr is maximum seek time,Dr is
maximum seek distance

force virtual service timekXr, wherek is constant

observed virutal service time isXv

iprobe: delay virtual request completionkXr − Xv

Virtual Performance Throttle

Predict real performance from virtual performance?
Useiprobe in virtual SCSI path to force virtual service
times to be proportional to real ones.

real service time model:Xr = Rr/2 + Sr(dr/Dr)
Rr is rotation time,Sr is maximum seek time,Dr is
maximum seek distance

force virtual service timekXr, wherek is constant

observed virutal service time isXv

iprobe: delay virtual request completionkXr − Xv

oops!k is unknown

Virtual Performance Throttle

Need self-scalingk! Rules:

1. virtual request completes after target time?
k too small→ iprobe increasesk

Virtual Performance Throttle

Need self-scalingk! Rules:

1. virtual request completes after target time?
k too small→ iprobe increasesk

2. iprobequeue of completions too large?
k too large→ iprobedecreasesk

Virtual Performance Throttle

Need self-scalingk! Rules:

1. virtual request completes after target time?
k too small→ iprobe increasesk

2. iprobequeue of completions too large?
k too large→ iprobedecreasesk

System reports currentk
Rule 1: accuracy
Rule 2: simulation run-time

Test Platforms

Real:

Linux 2.6.30

dual Intel Xeon 2.80GHz CPUs

Western Digital IDE system drive

dual 73.4 GB Seagate Cheetah 15.4K SCSI drives

dual Adaptec 39320A Ultra320 SCSI controllers

tests restricted to single SCSI drive

Test Platforms

Virtual:

KVM-based, virtual Linux 2.6.30

hosted on IBM 8853AC1 dual 2.83GHz Xeon blade

virtual 73.4 GB SCSI disk

virtual disk on NetApp FAS960c, access NFS

Test Platforms

Service Time Model: disable cache, open O_DIRECT,
measure 100,000 random page reads, linear fit

Test Platforms

Service Time Model: disable cache, open O_DIRECT,
measure 100,000 random page reads, linear fit

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140

A
cc

es
s

tim
e

in
 m

s

Distance in millions of sectors

 Observed
Least Square Fit

Test Platforms

Cache Model (Seagate manual andsdparm):

64 segments

221 sectors per segment

64-sector pre-fetch

Workload

Barford and Crovella: (SURGE) tool

Workload

Barford and Crovella: (SURGE) tool

64 processes, each executes:
forever{

}

Workload

Barford and Crovella: (SURGE) tool

64 processes, each executes:
forever{

generate a file count,n, from Pareto(α1,k1);

}

Workload

Barford and Crovella: (SURGE) tool

64 processes, each executes:
forever{

generate a file count,n, from Pareto(α1,k1);
repeat(n times){

}
}

Workload

Barford and Crovella: (SURGE) tool

64 processes, each executes:
forever{

generate a file count,n, from Pareto(α1,k1);
repeat(n times){

select file fromL files using Zipf(L);

}
}

Workload

Barford and Crovella: (SURGE) tool

64 processes, each executes:
forever{

generate a file count,n, from Pareto(α1,k1);
repeat(n times){

select file fromL files using Zipf(L);
while(file not read){

read one page;
generatet from Pareto(α2,k2);
sleept ms;
}

}
}

Distributions

Pareto (file count, time delays, large file sizes)

FX(x) = 1 − (k/x)α x ≥ k

Distributions

Pareto (file count, time delays, large file sizes)

FX(x) = 1 − (k/x)α x ≥ k

Zipf (file popularity)

p(i) = k/(i + 1), i = 0, 1, ..., L

Distributions

Pareto (file count, time delays, large file sizes)

FX(x) = 1 − (k/x)α x ≥ k

Zipf (file popularity)

p(i) = k/(i + 1), i = 0, 1, ..., L

Lognormal (small file sizes)

FY (y) =

∫ y

0

e−
(loget−µ)2

2σ2 /(tσ
√

2π)dt y > 0

Distributions

Pareto (file count, time delays, large file sizes)

FX(x) = 1 − (k/x)α x ≥ k

Zipf (file popularity)

p(i) = k/(i + 1), i = 0, 1, ..., L

Lognormal (small file sizes)

FY (y) =

∫ y

0

e−
(loget−µ)2

2σ2 /(tσ
√

2π)dt y > 0

Parameters from Barford-Crovella study

Results

64 processes, 50,000 requests, O_DIRECT

Results

64 processes, 50,000 requests, O_DIRECT

real virtual (k=8)
sched. cats dline cfq cats dline cfq

µS 1.96 2.71 1.39 2.58 3.24 2.36
σ2

S 8.51 9.76 5.85 9.03 8.23 7.78
µR 37.35 59.87 124.70 53.79 78.27 117.13
tput 8.19 6.08 2.19 6.15 5.06 3.38

S andR in ms

throughput in sectors/ms

Results

64 processes, 50,000 requests, non-O_DIRECT

Results

64 processes, 50,000 requests, non-O_DIRECT

real virtual (k=8)
cats dline cfq cats dline cfq

µS 6.53 7.41 7.80 7.15 7.60 8.57
σ2

S 11.13 8.80 17.62 6.22 6.05 10.30
µR 114.91 121.87 179.17 189.45 198.33 258.75
tput 12.00 12.04 9.08 11.44 11.68 8.82

S andR in ms

throughput in sectors/ms

Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

Response Time in ms

CATS(r)
CATS(v)

deadline(r)
deadline(v)

cfq(r)
cfq(v)

Conclusions

New method for predicting (real) disk scheduler
performance using only performance on virtual
machines

Conclusions

New method for predicting (real) disk scheduler
performance using only performance on virtual
machines

Method uses newiprobeto force virtual service
times to match simple service model

Conclusions

New method for predicting (real) disk scheduler
performance using only performance on virtual
machines

Method uses newiprobeto force virtual service
times to match simple service model

New disk scheduler (CATS) provided as case study

Conclusions

New method for predicting (real) disk scheduler
performance using only performance on virtual
machines

Method uses newiprobeto force virtual service
times to match simple service model

New disk scheduler (CATS) provided as case study

Absolute performance predictions not yet accurate,
but relative predictions are quite accurate

Conclusions

New method for predicting (real) disk scheduler
performance using only performance on virtual
machines

Method uses newiprobeto force virtual service
times to match simple service model

New disk scheduler (CATS) provided as case study

Absolute performance predictions not yet accurate,
but relative predictions are quite accurate

Fair criticism: just using virtual Linux as elaborate
simulator

Conclusions

New method for predicting (real) disk scheduler
performance using only performance on virtual
machines

Method uses newiprobeto force virtual service
times to match simple service model

New disk scheduler (CATS) provided as case study

Absolute performance predictions not yet accurate,
but relative predictions are quite accurate

Fair criticism: just using virtual Linux as elaborate
simulator

True, but good results with almost zero
programming effort!

Where has he been ... ?

	Motivation
	Virtualization?
	Goals
	Background - Kernel Probes
	Background - Kernel Probes
	iprobe
	iprobe
	Background - Disk Scheduling
	An Example
	An Example (Continued)
	An Example (Continued)
	Schedulers Supplied with Linux 2.6
	Cache-Aware Table Scheduler {small (CATS)}
	Cache-Aware Table Scheduler {small (CATS)}
	Virtual Performance Throttle
	Virtual Performance Throttle
	Test Platforms
	Test Platforms
	Test Platforms
	Test Platforms
	Workload
	Distributions
	Results
	Results
	Results
	Conclusions
	Where has he been ... ?

