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A useful perspective 
from a workshop on past and recent contributions 

on PERFORMANCE (analysis and design)

Which is the approach after all these years of work?

Analysis ?

Computer-based simulations ? 

Real experimentation? 

A clear recent trend to the right ?    But  ……………….

Th  l   i t t  i  dditi  t   it !!!
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The loops are important … in addition to own merit !!!



A l i  h l  fi  

Some of the merits of Analysis

Analysis helps figure out:

 the underlying “physics and laws” of the systemy g p y y

the impact on performance of (multiple) parameters, 
and the design space to be exploredand the design space to be explored.

 stability region of a system

 coping with the curse of dimensionality through bounds 
and approximationspp

 the frequency of occurrence of rare events
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 …………………….. etc …………………………………..



Main Focus of this presentation

 Exploit renewal cycles and set up recursive equations 
capturing protocol and system dynamicsp g p y y

 Employ properties of solutions of IDLE (Infinite Dimensional 
Linear Equations) to derive bounds of key performance indices Linear Equations) to derive bounds of key performance indices 
(stability, delay, etc)

 E lif  th  th d l  b  l i  it th   f   Exemplify the methodology by applying it the case of a 
Limited Sensing Random Access Protocol (LS-RAP)

 Outline other cases of applicability 
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Common channel shared by distributed  non communicating users

The LS-RAP

Common channel shared by distributed, non-communicating users
Ternary feedback to the nodes at the end of the slot (I – C – S)
M-packets / message, 1 slot /packet, ω CNTR, sync’ed slot boundaries
B0 : new active users (no attempt yet) – their CNTR=0B0  : new active users (no attempt yet) their CNTR 0
B1    : new active users (to attempt in next slot) – their CNTR=1
….etc 

The algorithm: 
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Th  l ith  ( ti d) 

The LS-RAP

The algorithm: (continued) 
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Session of multiplicity k (collisions)

Recursive equations and IDLE

0 451 23 23 1

l0 l1 l5

l0 l3

l1
l2l0 l3 l4

l3

Expectations yield:

(***)
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Maximum Stable Throughput
is derived by requiring the existence of a (finite for k finite) u n s to (***)S

Def: },:{maxmax  kLS k


is derived by requiring the existence of a (finite for k finite) u.n.s. to ( ) maxS

Prop 1: If for some λl there exist Lk
u < ∞, k < ∞, 

then Lk ≤ Lk
u 

u
k

u
jkjk LLh    then Lk ≤ Lk

and λl ≤ Smax

jj

(Lk
u = β(λ,p)k – γ(λ,p) was found analytically, will return)

Prop 2: If λN
u is the max rate for which the truncated at N (***) has 

  th  a u.n.s. then 

λN
u ≥ Smax and λN

u Smax



N
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Delay Bounds

For λ < λl, 

L E{L }   C E{C }  
L

CDS 


L=E{Lk},  C=E{Ck}, 

Ck = mean cumulative delay of messages over a session of multiplicity k 
(over L ) – similar recursive eqns as for L same h(over Lk) – similar recursive eqns as for Lk - same 

Suffices to derive Cu  Cl  Lu  Ll

kh

Suffices to derive C , C , L , L
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Upper Bounds on Lk, Ck

• Lk
u = β(λ,p)k – γ(λ,p),    Ck

u = v1k2 + v2k + v3 k ≥ 1, C0
u = 0

Coefficients β  λ  v  v v analytically derived   Coefficients β, λ, v1, v2, v3 analytically derived   

In line with linear / quadratic increase of Lk / Ck wrt k

Improvement discussed later  
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Lower Bounds on Lk, Ck

Def: Majorant/Minorant systems
If Ak ≥ |ak|, Bkj ≥ |bkj|, 0≤k≤∞ thenk k kj kj

is a majorant for 





0j

jkjkk xBAx 





0j

jkjkk yBay

(MAJ) (MIN)(MAJ) (MIN)

Theorem: If (MAJ) has nonnegative solution then (MIN) has solutions 
satisfying |y | ≤ xsatisfying |yk| ≤ xk

Since (***) has nonnegative solution for λ < λl and N-truncated (***)
is a minorant to (***)  L l ≤ L (L l : solutions to N truncated (***))is a minorant to ( )  Lk

l ≤ Lk (Lk
l : solutions to N-truncated ( ))

Similarly Ck
l ≤ Ck
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On Solution Complexity and Tightness of Bounds

Lower bounds

 Solution to N-truncated (***) is fast through successive
substitutions. N can be very large, yielding tight lower bounds 

on L  Con Lk, Ck.

 Due to truncation effect at k=N (boundary effect):
Lk1

N
1 ≈ Lk1

N
2 for k1 << {N1, N2} and << N1 << N2

 LN
1 ≈ LN

2 since the Poisson multiplicities for small

k t ib t  tl  t  th   L k contribute mostly to the mean L 

 Tight upper bounds are more challenging
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On Solution Complexity and Tightness of Bounds

 Derive some loose upper bounds, such as

Upper bounds

Lk
u = β(λ,p)k – γ(λ,p),    Ck

u = v1k2 + v2k + v3

 Formulate and solve the following N truncated IDLE Formulate and solve the following N-truncated IDLE









N

j

ut
jkj

Nj

u
jkjk

ut
k xaxahx

01

then xk ≤ xk
ut ≤ xk

u , 0 ≤ k ≤ N

 jNj 01

hk
t

k k k ,

where xk solves *)*(*     
0






j

jkjk
ut

k xahx
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Tightening λu

1. λl (max λ yielding a u.n.s. to N-truncated (***)) does not change 
much as N increases, for N, even small ( λl tight?)

2. λl << λu  (from 1.), λu probably very loose

3. Improving on λu :p g
x0

u = 1,  xk
u = (1+ε)Lk

l,  1 ≤ k ≤ 7

xk
u = β(λ,p)k – γ(λ,p),  8 ≤ k ≤ ∞  (as earlier)

Lk
l is a lower bound from N-trancated (***)

Not hard to select ε small s.t.

and then λut is the max λ for which (*) has u.n.s.

(*)          u
k

u
jkjk xxah 
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Application to priority queuing

Assuming non-preemtive, work conserving disciplines
 Stability conditions known: ρ = ρFIFO < 1

 Mean renewal cycle length X = XFIFO = 1/(1-ρ)

 Mean delay for class i: Di = Ci/(λiX)

Lower bounds on Di (Dlo
i)

Solving N truncated IDLE for CSolving N-truncated IDLE for Ck

Ck = mean cumulative delay of packets served over a mean session Χk

Χk = mean length of the period between a time instant when the Χk = mean length of the period between a time instant when the 

system is in state k, till the end of the renewal cycle
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Application to priority queuing (cntd.)

Upper bounds on Di (Dup
i)

Derived from the (usually known) FIFO equivalent result and the 

expression 
i

k

i

i
FIFO DD 

1 


leading to 

i1 

][1
,1

0



k

ikk

k
l

kFIFO
i

i
up DDD 
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Conclusions of the presented work

 Exploit renewal cycles and set up recursive equations 
capturing protocol and system dynamicsp g p y y

 Employ properties of solutions of IDLE (Infinite Dimensional 
Linear Equations) to derive bounds of key performance indices Linear Equations) to derive bounds of key performance indices 
(stability, delay, etc)

 E lif  th  th d l  b  l i  it th   f   Exemplify the methodology by applying it the case of a 
Limited Sensing Random Access Protocol (LS-RAP)

 Outline other cases of applicability 
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Main point of this talk
Some of the merits of Analysis

Analysis helps figure out:

 the underlying “physics and laws” of the system the underlying physics and laws  of the system

the impact on performance of (multiple) parameters, 
d h  d    b  l dand the design space to be explored.

 stability region of a systemy g f y

 coping with the curse of dimensionality through bounds 
and approximationsand approximations

 the frequency of occurrence of rare events
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 …………………….. etc …………………………………..


