Markov Chains and Spectral Clustering

Ning Liu and William J. Stewart Department of Computer Science North Carolina State University Raleigh, NC 27695–8206

A presentation in honor of Dr. Guenter Haring for having attained that state of grace to which we all aspire — Professor Emeritus.

- Network science application areas
 - rankings of soccer teams and players
 - grocery placement
 - spheres of influence, etc.
 - social networking
- Markov chains and spectral clustering
 - Google/Yahoo!
 - Reverse engineering problem,
 - i.e., draw the Markov chain from the eigenvectors

Markov Chains and Spectral Clustering

Miroslav Fiedler "Algebraic Connectivity of Graphs, 1973" — developed a spectral partitioning method to obtain the minimum cut on an undirected graph (symmetric system).

The vector that results from the spectral decomposition — the Fiedler vector — allows the nodes to be partitioned into two subsets.

Spectral decomposition is applied to the Laplacian matrix.

Alternative approach based on the dominant eigenvectors of a Markov chain — and more broadly applicable to non-symmetric systems.

3

Spectral Graph Partitioning

- Graph partitioning/clustering:
 - group the vertices of a connected graph into disjoint partitions.
- Objective:
 - minimize the total cut weight
 - maximize group cohesion.

The Laplacian Matrix and Minimum Cut:

$$L_{ij} = \begin{cases} \sum_{k} w_{ik}, & \text{if } i = j \\ -w_{ij}, & \text{if } i \neq j, i \text{ and } j \text{ are adjacent} \\ 0, & \text{otherwise,} \end{cases}$$

- 1. L is symmetric, positive semi-definite. As such its eigenvalues are all real and non-negative. Furthermore the eigenvectors of L constitute a full set of n real and orthogonal vectors.
- 2. Le = 0, where e is a column vector whose elements are all equal to 1. Thus 0 is the smallest eigenvalue of L and e is its corresponding eigenvector.
- 3. For any vector x, we have

$$x^{T}Lx = \sum_{\{i,j\}\in E} w_{ij}(x_{i} - x_{j})^{2}.$$
 (1)

Given a partition of V into V_1 and V_2 , a partition vector p is defined as

$$p_i = \begin{cases} +1, & \text{vertex } i \in V_1, \\ -1, & \text{vertex } i \in V_2. \end{cases}$$
(2)

Observe that $p^T p = n$. Also, from Equation (1),

$$p^{T}Lp = \sum_{\{i,j\}\in E} w_{ij}(p_{i} - p_{j})^{2}.$$

- edge weights within V_1 and V_2 are not counted,
- edges connecting partitions are multiplied by 4.
- Note: $\operatorname{cut}(V_1, V_2) = \sum_{i \in V_1, j \in V_2} w_{ij}; \quad p^T L p = 4 \operatorname{cut}(V_1, V_2).$ Hence Raleigh Quotient:

$$\frac{p^T L p}{p^T p} = \frac{1}{n} \cdot 4 \operatorname{cut}(V_1, V_2).$$
(3)

Maximum and minimum of the Rayleigh quotient can be obtained as the largest and smallest eigenvalues of the Laplacian matrix L:

$$\lambda_{max} = \max_{x \neq 0} \frac{x^T L x}{x^T x} \quad \text{and} \quad \lambda_{min} = \min_{x \neq 0} \frac{x^T L x}{x^T x}, \tag{4}$$

where x is the eigenvector of L corresponding to λ_{max} and λ_{min} .

Minimum value of the Rayleigh quotient is zero

— the smallest eigenvalue of L corresponding to the eigenvector e.

All the vertices of the graph are in the same set

- the trivial partition.

The second smallest eigenvalue of L, the Fiedler value, provides the optimal value

Its corresponding eigenvector is the Fiedler vector.

Example:

Using the definition of the Laplacian matrix L, we have

$$\mathbf{L} = - \begin{pmatrix} -1.7 & 0.9 & 0.7 & 0 & 0 & 0.1 \\ 0.9 & -1.7 & 0.8 & 0 & 0 & 0 \\ 0.7 & 0.8 & -1.7 & 0.2 & 0 & 0 \\ 0 & 0 & 0.2 & -1.6 & 0.6 & 0.8 \\ 0 & 0 & 0 & 0.6 & -1.3 & 0.7 \\ 0.1 & 0 & 0 & 0.8 & 0.7 & -1.6 \end{pmatrix}$$

The eigenvalues and associated eigenvectors of L are given by

Eigenvalues =	= (0.0000	0.1876	1.9832	2.2582 2	.5487 2.62	(222),
	(0.4082	-0.4080	0.0864	-0.4285	0.3379	0.6014
	0.4082	-0.4401	0.1094	-0.0975	0.1841	-0.7644
Figonyostors —	0.4082	-0.3731	-0.1359	0.5501	-0.5755	0.2046
Eigenvectors –	0.4082	0.3670	-0.5473	0.3544	0.5229	0.0091
	0.4082	0.4514	0.7652	0.2025	0.0271	0.0483
	(0.4082)	0.4027	-0.2778	-0.5810	-0.4966	-0.0990

The Signless Laplacian Matrix and Maximum Association:

— to maximize the total edge weight within two clusters.

$$M_{ij} = \begin{cases} \sum_{k} w_{ik}, & \text{if } i = j \\ +w_{ij}, & \text{if } i \neq j, i \text{ and } j \text{ are adjacent} \\ 0, & \text{otherwise,} \end{cases}$$

Given a graph G = (V, E) and two clusters V_1 , V_2 where $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$, the cohesion/association is defined as

$$\operatorname{Cohesion}(V_1, V_2) = \left(\sum_{i,j \in V_1} w_{ij} + \sum_{i,j \in V_2} w_{ij}\right).$$
(5)

We seek to maximize this quantity over all partitions of G.

Given the partition vector \boldsymbol{p}

$$p_i = \begin{cases} +1, & \text{vertex } i \in V_1, \\ -1, & \text{vertex } i \in V_2, \end{cases} \implies p^T M p = \sum_{\{i,j\} \in E} w_{ij} (p_i + p_j)^2.$$

Notice that this time:

— edges connecting the two subsets V_1 and V_2 do not contribute

- edges within each cluster contribute 4 times their weight.

$$\frac{p^T M p}{p^T p} = \frac{1}{n} \cdot 4 \operatorname{Cohesion}(V_1, V_2)$$

The optimal partition is the one that maximizes this Raleigh quotient.

$$\lambda_{min} \le p^T M p / p^T p \le \lambda_{max}$$

where λ_{min} and λ_{max} are the smallest and largest eigenvalues of M.

Properties of the signless Laplacian:

— all its eigenvalues are real and positive.

— the right-hand eigenvector corresponding to the largest eigenvalue is the only eigenvector whose elements are all nonzero and positive.

The eigenvector of M corresponding to the second largest eigenvalue provides node clustering information.

The second largest eigenvalue of the signless Laplacian provides a quantitative evaluation of the total weight of edges within clusters.

The Laplacian L and signless Laplacian M can be obtained as L = D - A and M = D + A (and hence M = 2D - L), where

— A is the adjacency matrix;

— D is a diagonal matrix with $D_{ii} = \sum_k w_{ik}$.

Example:

Using the definition of the signless Laplacian matrix M, we have

$$\mathbf{M} = \begin{pmatrix} 1.7 & 0.9 & 0.7 & 0 & 0 & 0.1 \\ 0.9 & 1.7 & 0.8 & 0 & 0 & 0 \\ 0.7 & 0.8 & 1.7 & 0.2 & 0 & 0 \\ 0 & 0 & 0.2 & 1.6 & 0.6 & 0.8 \\ 0 & 0 & 0 & 0.6 & 1.3 & 0.7 \\ 0.1 & 0 & 0 & 0.8 & 0.7 & 1.6 \end{pmatrix}.$$

The eigenvalues and associated eigenvectors of ${\cal M}$ are given by

Eigenv	alues = (().6918 0.7	7581 0.81	53 1.1043	2.8996	$3.3309 \ \Big) ,$
	(-0.3318	-0.2012	0.5223	0.4930	-0.1426	0.5597
	0.1546	0.5654	-0.5136	0.1750	-0.1764	0.5752
Figonyostors —	0.1784	-0.4393	-0.0195	-0.6850	-0.1041	0.5429
Eigenvectors –	-0.3566	0.5115	0.3130	-0.3852	0.5802	0.1677
	-0.4591	-0.4137	-0.5880	0.1696	0.4830	0.1015
	0.7045	-0.1182	0.1389	0.2828	0.6064	0.1509

Indicators of State Clustering

The significance of subdominant, right-hand eigenvectors

System equilibrium is defined by the stationary probability vector.

Associate a real number with each state — its "distance" from this equilibrium position. Let $w_i^{(1)} = (0, 0, \dots, 1, \dots, 0) \implies$ system is initially in state i. Let x_1, x_2, \dots, x_n be the left-hand eigenvectors of P

i.e.,
$$x_j^T P = \lambda_j x_j^T$$
 for all $j = 1, 2, \dots, n$,

arranged into descending order

Writing $w_i^{(1)}$ as a linear combination of these eigenvectors:

$$w_i^{(1)} = c_{i1}x_1^T + c_{i2}x_2^T + \ldots + c_{in}x_n^T$$

$$w_i^{(1)} = c_{i1}x_1^T + c_{i2}x_2^T + \ldots + c_{in}x_n^T$$

Repeated postmultiplication of $w_i^{(1)}$ by P yields the steady-state.

$$w_i^{(1)}P = c_{i1}x_1^T P + c_{i2}x_2^T P + \ldots + c_{in}x_n^T P$$
(6)

$$= c_{i1}x_1^T + c_{i2}\lambda_2x_2^T + \ldots + c_{in}\lambda_nx_n^T = w_i^{(2)}, \qquad (7)$$

In general

$$w_i^{(k+1)} = c_{i1}x_1^T + c_{i2}\lambda_2^k x_2^T + \ldots + c_{in}\lambda_n^k x_n^T.$$

If the system initially starts in some other state $j \neq i$, we have

$$w_{j}^{(k+1)} = c_{j1}x_{1}^{T} + c_{j2}\lambda_{2}^{k}x_{2}^{T} + \ldots + c_{jn}\lambda_{n}^{k}x_{n}^{T}.$$

Only the constant coefficients differ Observe what happens when $\lambda_2^k \gg \lambda_l^k$ for $l \ge 3$. Considering all possible starting states:

$$\begin{pmatrix} w_1^{(k+1)} \\ w_2^{(k+1)} \\ \vdots \\ w_n^{(k+1)} \end{pmatrix} = \begin{pmatrix} c_{11}x_1^T + c_{12}\lambda_2^k x_2^T + \dots + c_{1n}\lambda_n^k x_n^T \\ c_{21}x_1^T + c_{22}\lambda_2^k x_2^T + \dots + c_{2n}\lambda_n^k x_n^T \\ \vdots \\ c_{n1}x_1^T + c_{n2}\lambda_2^k x_2^T + \dots + c_{nn}\lambda_n^k x_n^T \end{pmatrix},$$

i.e.,

$$W^{(k+1)} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix} \begin{pmatrix} 1 & & & \\ & \lambda_2^k & & \\ & & \ddots & \\ & & & \lambda_n^k \end{pmatrix} \begin{pmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{pmatrix} \equiv C\Lambda^k X^T$$

We now need to find C.

Recall that

$$W^{(1)} = (w_1^{(1)}, w_2^{(1)}, \dots, w_n^{(1)})^T = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

and that

$$w_i^{(1)} = c_{i1}x_1^T + c_{i2}x_2^T + \ldots + c_{in}x_n^T, \quad i = 1, 2, \ldots, n.$$

Thus

$$W^{(1)} = CX^T,$$

and since $W^{(1)} = I$, we obtain

$$I = CX^T,$$

i.e., $C = (X^T)^{-1} = Y$, the set of right-hand eigenvectors of P.

Department of Computer Science

Therefore a relative distance of each state from the stationary probability vector is obtained from the second column of the matrix C:

$$\begin{pmatrix} w_1^{(k+1)} \\ w_2^{(k+1)} \\ \vdots \\ w_n^{(k+1)} \end{pmatrix} = \begin{pmatrix} c_{11}x_1^T + c_{12}\lambda_2^k x_2^T + \dots + c_{1n}\lambda_n^k x_n^T \\ c_{21}x_1^T + c_{22}\lambda_2^k x_2^T + \dots + c_{2n}\lambda_n^k x_n^T \\ \vdots \\ c_{n1}x_1^T + c_{n2}\lambda_2^k x_2^T + \dots + c_{nn}\lambda_n^k x_n^T \end{pmatrix},$$

Subsequent columns may be used to obtain subsidiary effects.

- States whose corresponding component value in this vector is large are, in a relative sense, far from the equilibrium position.
- States corresponding to component values that are relatively close together form a cluster, or a subset, of states.

Markov Random Walks on Graphs

The adjacency matrix A of a graph can be converted to a transition probability matrix P to generate a random walk on a graph.

 $P = D^{-1}A.$

Since
$$L = D - A$$
 and $M = D + A$, we have
 $I - P = D^{-1}L$ and $I + P = D^{-1}$

Property: If (λ, v) is an eigen-solution of $Pv = \lambda v$, then it is also an eigen-solution of the generalized eigenvalue problems

 $(1 - \lambda)Dv = Lv$ and $(1 + \lambda)Dv = Mv$.

M

Proof: Given an eigen-pair (λ, v) such that $Pv = \lambda v$, then, since $P = D^{-1}A$ and L = D - A, we have

$$Pv = \lambda v \Rightarrow D^{-1}Av = \lambda v \Rightarrow D^{-1}(D-L)v = \lambda v$$

$$\Rightarrow Iv - D^{-1}Lv = \lambda v \quad \Rightarrow \quad (1 - \lambda)Dv = Lv \tag{8}$$

A similar result holds for the Laplacian matrix M = D + A.

The eigenvectors of the generalized eigenvalue problem $(1 - \lambda)Dv = Lv$ provide a heuristic solution for the minimum balanced cut on a graph. (Shi and Malik).

It therefore follows that the right eigenvectors of P also provide the same balanced cut solution.

Property: The eigenvalues of the probability matrix P derived from a random walk on a graph are real.

Proof: $P = D^{-1}A$ has a symmetric structure. Also, since

$$D^{1/2}PD^{-1/2} = D^{-1/2}AD^{-1/2},$$

P is similar to $D^{-1/2}AD^{-1/2}$, which is symmetric. Result follows.

This provides an alternative way to calculate the left- and right-hand eigenvectors of P, i.e., $Px_R = \lambda x_R$ and $P^T x_L = \lambda x_L$.

$$Px_R = \lambda x_R \quad \Rightarrow \quad D^{-1}Ax_R = \lambda x_R.$$

If we premultiply $D^{1/2}$ on both sides, we obtain

$$D^{-1/2}AD^{-1/2}(D^{1/2}x_R) = \lambda(D^{1/2}x_R).$$

 $D^{1/2}x_R$ is an eigenvector of the symmetric matrix $D^{-1/2}AD^{-1/2}$.

Now consider x_L . Since A is symmetric

$$P^T x_L = \lambda x_L \quad \Rightarrow \quad A D^{-1} x_L = \lambda x_L.$$

Premultiplying with $D^{-1/2}$ on both sides gives

$$D^{-1/2}AD^{-1/2}(D^{-1/2}x_L) = \lambda(D^{-1/2}x_L).$$

 $\implies D^{-1/2}x_L$ is an eigenvector of the symmetric matrix $D^{-1/2}AD^{-1/2}$.

Procedure:

Compute (λ, v) , the eigenvalue/vector of $D^{-1/2}AD^{-1/2}$, and then set

$$x_R = D^{-1/2}v$$
 and $x_L = D^{1/2}v$.

If the Markov chain is ergodic, then spectral decomposition on P provides two clustering measures for graph nodes:

- The balanced minimum cut (alternatively, maximum cohesion)

 the eigenvector associated with the second smallest (positive) eigenvalue.
- The "distance" from each state to the steady state

 the eigenvector associated with the second largest modulus of
 eigenvalues (not necessarily positive).

$$\lambda_1 = 0.8852; \quad \lambda_2 = -0.9336.$$

$$(\mathbf{v_1}, \mathbf{v_2}) = \begin{pmatrix} 1.0 & 1.0 \\ 1.0 & 1.0 \\ 1.0 & 1.0 \\ 1.0 & 1.0 \\ 1.0 & 1.0 \\ 1.0 & 1.0 \\ 1.0 & 1.0 \\ 1.0 & 1.0 \\ 1.0 & 1.0 \\ 1.0 & 1.0 \\ -1.8138 & -29.3810 \\ -1.8138 & -29.3810 \\ -1.8138 & -29.3810 \\ -1.8138 & -29.3810 \\ -1.8138 & -29.3810 \\ -1.8138 & -29.3810 \\ -1.8138 & -29.3810 \\ -1.6058 & 27.4286 \end{pmatrix} ; \quad (\mathbf{v_1}, \mathbf{v_2}) = \begin{pmatrix} -0.5513 & -0.0340 \\ -0.5513 &$$

October 2010

From the second clustering measure (using v_2):

- (a) The first five elements in cluster 1 have relatively small modulus (states are closely linked) while others in cluster 2 have relatively large modulus (opposite structure).
- (b) The value of vertex 5 is closer to cluster 2 while the value of vertex 11 is closer to cluster 1. Because vertex 5 and 11 have the possibility of transitioning to the other cluster in a single step; they are the connecting vertices between clusters.

Example 2:

Eigenvalues of P: $\lambda_1 = 1, \ \lambda_2 = 0.9328, \ \dots, \ \lambda_{11} = -0.9653.$ (1, 0.9328, 0.6281, 0, 0, 0, 0, -0.3216, -0.5539, -0.7201, -0.9653)

	(-0.2700)	0.1801	0.3132
	-0.2895	0.2868	-0.3245
	-0.2700	0.1801	0.3132
	-0.2142	-0.0605	-0.2802
	-0.0595	-0.4743	0.1849
$({\bf v_2}, {\bf v_3}, {\bf v_{11}}) =$	-0.0638	-0.7552	-0.1916
	0.1116	-0.0780	-0.0637
	0.1578	0.0896	0.0264
	0.1700	0.1478	-0.0211
	0.1578	0.0896	0.0264
	0.1601	0.0991	0.0083

NCD Markov Chains

Example 3: Courtois 8×8 transition probability matrix, P:

(0.85	0.0	0.149	0.0009	0.0	0.00005	0.0	0.00005
	0.1	0.65	0.249	0.0	0.0009	0.00005	0.0	0.00005
	0.1	0.8	0.0996	0.0003	0.0	0.0	0.0001	0.0
	0.0	0.0004	0.0	0.7	0.2995	0.0	0.0001	0.0
	0.0005	0.0	0.0004	0.399	0.6	0.0001	0.0	0.0
	0.0	0.00005	0.0	0.0	0.00005	0.6	0.2499	0.15
	0.00003	0.0	0.00003	0.00004	0.0	0.1	0.8	0.0999
ĺ	0.0	0.00005	0.0	0.0	0.00005	0.1999	0.25	0.55

- The eigenvalues of P are
 (1.0 0.9998 0.9985 0.7500 0.5501 0.4000 0.3007 −0.1495).
- The right-hand eigenvectors v_2 and v_3 are both important.

	(-0.3536)	-0.4876)
	-0.3536	-0.4878
	-0.3536	-0.4883
(-0.3536	0.3783
$(\mathbf{v_2},\mathbf{v_3}) =$	-0.3536	0.3777
	0.3536	0.0073
	0.3536	0.0073
	0.3536	0.0073