Markov Chains and Spectral Clustering

Ning Liu and William J. Stewart
Department of Computer Science
North Carolina State University
Raleigh, NC 27695–8206

A presentation in honor of Dr. Guenter Haring for having attained that state of grace to which we all aspire
— Professor Emeritus.
• **Network science application areas**
 — rankings of soccer teams and players
 — grocery placement
 — spheres of influence, etc.
 — social networking

• **Markov chains and spectral clustering**
 — Google/Yahoo!
 — Reverse engineering problem,
 i.e., draw the Markov chain from the eigenvectors
Miroslav Fiedler “Algebraic Connectivity of Graphs, 1973” — developed a spectral partitioning method to obtain the minimum cut on an undirected graph (symmetric system).

The vector that results from the spectral decomposition — the Fiedler vector — allows the nodes to be partitioned into two subsets.

Spectral decomposition is applied to the Laplacian matrix.

Alternative approach based on the dominant eigenvectors of a Markov chain — and more broadly applicable to non-symmetric systems.
Graph partitioning/clustering:
- group the vertices of a connected graph into disjoint partitions.

Objective:
- minimize the total cut weight
- maximize group cohesion.
The Laplacian Matrix and Minimum Cut:

\[L_{ij} = \begin{cases}
\sum_k w_{ik}, & \text{if } i = j \\
-w_{ij}, & \text{if } i \neq j, \text{ } i \text{ and } j \text{ are adjacent} \\
0, & \text{otherwise},
\end{cases} \]

1. \(L \) is symmetric, positive semi-definite. As such its eigenvalues are all real and non-negative. Furthermore the eigenvectors of \(L \) constitute a full set of \(n \) real and orthogonal vectors.

2. \(Le = 0 \), where \(e \) is a column vector whose elements are all equal to 1. Thus 0 is the smallest eigenvalue of \(L \) and \(e \) is its corresponding eigenvector.

3. For any vector \(x \), we have

\[x^T L x = \sum_{\{i,j\} \in E} w_{ij} (x_i - x_j)^2. \] (1)
Given a partition of V into V_1 and V_2, a partition vector p is defined as

$$p_i = \begin{cases} +1, & \text{vertex } i \in V_1, \\ -1, & \text{vertex } i \in V_2. \end{cases}$$ \hfill (2)$$

Observe that $p^T p = n$. Also, from Equation (1),

$$p^T L p = \sum_{\{i,j\} \in E} w_{ij} (p_i - p_j)^2.$$ — edge weights within V_1 and V_2 are not counted,
— edges connecting partitions are multiplied by 4.

Note: $\text{cut}(V_1, V_2) = \sum_{i \in V_1, j \in V_2} w_{ij}$; $p^T L p = 4 \text{cut}(V_1, V_2)$. Hence

Raleigh Quotient:

$$\frac{p^T L p}{p^T p} = \frac{1}{n} \cdot 4 \text{cut}(V_1, V_2).$$ \hfill (3)
Maximum and minimum of the Rayleigh quotient can be obtained as the largest and smallest eigenvalues of the Laplacian matrix L:

$$
\lambda_{\text{max}} = \max_{x \neq 0} \frac{x^T L x}{x^T x} \quad \text{and} \quad \lambda_{\text{min}} = \min_{x \neq 0} \frac{x^T L x}{x^T x},
$$

(4)

where x is the eigenvector of L corresponding to λ_{max} and λ_{min}.

Minimum value of the Rayleigh quotient is zero — the smallest eigenvalue of L corresponding to the eigenvector e.

All the vertices of the graph are in the same set — the trivial partition.

The second smallest eigenvalue of L, the Fiedler value, provides the optimal value

Its corresponding eigenvector is the Fiedler vector.
Example:

Using the definition of the Laplacian matrix L, we have

$$
L = -\begin{pmatrix}
-1.7 & 0.9 & 0.7 & 0 & 0 & 0.1 \\
0.9 & -1.7 & 0.8 & 0 & 0 & 0 \\
0.7 & 0.8 & -1.7 & 0.2 & 0 & 0 \\
0 & 0 & 0.2 & -1.6 & 0.6 & 0.8 \\
0 & 0 & 0 & 0.6 & -1.3 & 0.7 \\
0.1 & 0 & 0 & 0.8 & 0.7 & -1.6
\end{pmatrix}.
$$
The eigenvalues and associated eigenvectors of L are given by

\[
\text{Eigenvalues} = \begin{pmatrix}
0.0000 & 0.1876 & 1.9832 & 2.2582 & 2.5487 & 2.6222 \\
0.4082 & -0.4080 & 0.0864 & -0.4285 & 0.3379 & 0.6014 \\
0.4082 & -0.4401 & 0.1094 & -0.0975 & 0.1841 & -0.7644 \\
0.4082 & -0.3731 & -0.1359 & 0.5501 & -0.5755 & 0.2046 \\
0.4082 & 0.3670 & -0.5473 & 0.3544 & 0.5229 & 0.0091 \\
0.4082 & 0.4514 & 0.7652 & 0.2025 & 0.0271 & 0.0483 \\
0.4082 & 0.4027 & -0.2778 & -0.5810 & -0.4966 & -0.0990 \\
\end{pmatrix},
\]
The Signless Laplacian Matrix and Maximum Association:

—to maximize the total edge weight within two clusters.

\[
M_{ij} = \begin{cases}
\sum_k w_{ik}, & \text{if } i = j \\
+ w_{ij}, & \text{if } i \neq j, i \text{ and } j \text{ are adjacent} \\
0, & \text{otherwise},
\end{cases}
\]

Given a graph \(G = (V, E) \) and two clusters \(V_1, V_2 \) where \(V_1 \cap V_2 = \emptyset \) and \(V_1 \cup V_2 = V \), the cohesion/association is defined as

\[
\text{Cohesion}(V_1, V_2) = \left(\sum_{i,j \in V_1} w_{ij} + \sum_{i,j \in V_2} w_{ij} \right). \quad (5)
\]

We seek to maximize this quantity over all partitions of \(G \).
Given the partition vector p

$$p_i = \begin{cases}
+1, & \text{vertex } i \in V_1, \\
-1, & \text{vertex } i \in V_2,
\end{cases} \quad \Rightarrow \quad p^T M p = \sum_{\{i,j\} \in E} w_{ij} (p_i + p_j)^2.$$

Notice that this time:
— edges connecting the two subsets V_1 and V_2 do not contribute
— edges within each cluster contribute 4 times their weight.

$$\frac{p^T M p}{p^T p} = \frac{1}{n} \cdot 4 \text{Cohesion}(V_1, V_2)$$

The optimal partition is the one that maximizes this Raleigh quotient.

$$\lambda_{min} \leq \frac{p^T M p}{p^T p} \leq \lambda_{max}$$

where λ_{min} and λ_{max} are the smallest and largest eigenvalues of M.
Properties of the signless Laplacian:
— all its eigenvalues are real and positive.
— the right-hand eigenvector corresponding to the largest eigenvalue is
the only eigenvector whose elements are all nonzero and positive.

The eigenvector of M corresponding to the second largest eigenvalue
provides node clustering information.

The second largest eigenvalue of the signless Laplacian provides a
quantitative evaluation of the total weight of edges within clusters.

The Laplacian L and signless Laplacian M can be obtained as
$L = D - A$ and $M = D + A$ (and hence $M = 2D - L$), where

— A is the adjacency matrix;
— D is a diagonal matrix with $D_{ii} = \sum_k w_{ik}$.
Example:

Using the definition of the signless Laplacian matrix M, we have

\[
M = \begin{pmatrix}
1.7 & 0.9 & 0.7 & 0 & 0 & 0.1 \\
0.9 & 1.7 & 0.8 & 0 & 0 & 0 \\
0.7 & 0.8 & 1.7 & 0.2 & 0 & 0 \\
0 & 0 & 0.2 & 1.6 & 0.6 & 0.8 \\
0 & 0 & 0 & 0.6 & 1.3 & 0.7 \\
0.1 & 0 & 0 & 0.8 & 0.7 & 1.6 \\
\end{pmatrix}
\]
The eigenvalues and associated eigenvectors of M are given by

\[
\text{Eigenvalues} = \begin{pmatrix} 0.6918 & 0.7581 & 0.8153 & 1.1043 & 2.8996 & 3.3309 \end{pmatrix},
\]

\[
\text{Eigenvectors} = \begin{pmatrix} -0.3318 & -0.2012 & 0.5223 & 0.4930 & -0.1426 & 0.5597 \\ 0.1546 & 0.5654 & -0.5136 & 0.1750 & -0.1764 & 0.5752 \\ 0.1784 & -0.4393 & -0.0195 & -0.6850 & -0.1041 & 0.5429 \\ -0.3566 & 0.5115 & 0.3130 & -0.3852 & 0.5802 & 0.1677 \\ -0.4591 & -0.4137 & -0.5880 & 0.1696 & 0.4830 & 0.1015 \\ 0.7045 & -0.1182 & 0.1389 & 0.2828 & 0.6064 & 0.1509 \end{pmatrix}.
\]
Indicators of State Clustering

The significance of subdominant, right-hand eigenvectors

System equilibrium is defined by the stationary probability vector. Associate a real number with each state — its “distance” from this equilibrium position.

Let $w_i^{(1)} = (0, 0, \ldots, 1, \ldots, 0) \implies$ system is initially in state i.

Let x_1, x_2, \ldots, x_n be the left-hand eigenvectors of P

\[x_j^T P = \lambda_j x_j^T \] for all $j = 1, 2, \ldots, n$,

arranged into descending order

Writing $w_i^{(1)}$ as a linear combination of these eigenvectors:

\[w_i^{(1)} = c_{i1} x_1^T + c_{i2} x_2^T + \ldots + c_{in} x_n^T \]
\[w_i^{(1)} = c_1 x_1^T + c_2 x_2^T + \ldots + c_n x_n^T \]

Repeated postmultiplication of \(w_i^{(1)} \) by \(P \) yields the steady-state.

\[w_i^{(1)} P = c_1 x_1^T P + c_2 x_2^T P + \ldots + c_n x_n^T P \]
\[= c_1 x_1^T + c_2 \lambda_2 x_2^T + \ldots + c_n \lambda_n x_n^T = w_i^{(2)}, \]

In general

\[w_i^{(k+1)} = c_1 x_1^T + c_2 \lambda_2^k x_2^T + \ldots + c_n \lambda_n^k x_n^T. \]

If the system initially starts in some other state \(j \neq i \), we have

\[w_j^{(k+1)} = c_1 x_1^T + c_2 \lambda_2^k x_2^T + \ldots + c_n \lambda_n^k x_n^T. \]

Only the constant coefficients differ

Observe what happens when \(\lambda_2^k \gg \lambda_l^k \) for \(l \geq 3 \).
Considering all possible starting states:

\[
\begin{pmatrix}
 w_1^{(k+1)} \\
 w_2^{(k+1)} \\
 \vdots \\
 w_n^{(k+1)}
\end{pmatrix}
= \begin{pmatrix}
 c_{11} x_1^T + c_{12} \lambda_2^k x_2^T + \ldots + c_{1n} \lambda_n^k x_n^T \\
 c_{21} x_1^T + c_{22} \lambda_2^k x_2^T + \ldots + c_{2n} \lambda_n^k x_n^T \\
 \vdots \\
 c_{n1} x_1^T + c_{n2} \lambda_2^k x_2^T + \ldots + c_{nn} \lambda_n^k x_n^T
\end{pmatrix},
\]

i.e.,

\[
W^{(k+1)} = \begin{pmatrix}
 c_{11} & c_{12} & \ldots & c_{1n} \\
 c_{21} & c_{22} & \ldots & c_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n1} & c_{n2} & \ldots & c_{nn}
\end{pmatrix}
\begin{pmatrix}
 1 \\
 \lambda_2^k \\
 \vdots \\
 \lambda_n^k
\end{pmatrix}
\begin{pmatrix}
 x_1^T \\
 x_2^T \\
 \vdots \\
 x_n^T
\end{pmatrix}
\equiv C \Lambda^k X^T,
\]

We now need to find \(C \).
Recall that

\[W^{(1)} = (w_1^{(1)}, w_2^{(1)}, \ldots, w_n^{(1)})^T = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \]

and that

\[w_i^{(1)} = c_{i1}x_1^T + c_{i2}x_2^T + \cdots + c_{in}x_n^T, \quad i = 1, 2, \ldots, n. \]

Thus

\[W^{(1)} = CX^T, \]

and since \(W^{(1)} = I \), we obtain

\[I = CX^T, \]

i.e., \(C = (X^T)^{-1} = Y \), the set of right-hand eigenvectors of \(P \).
Therefore a relative distance of each state from the stationary probability vector is obtained from the second column of the matrix C:

\[
\begin{pmatrix}
 w_1^{(k+1)} \\
 w_2^{(k+1)} \\
 \vdots \\
 w_n^{(k+1)}
\end{pmatrix} =
\begin{pmatrix}
 c_{11} x_1^T + c_{12} \lambda_2^k x_2^T + \ldots + c_{1n} \lambda_n^k x_n^T \\
 c_{21} x_1^T + c_{22} \lambda_2^k x_2^T + \ldots + c_{2n} \lambda_n^k x_n^T \\
 \vdots \\
 c_{n1} x_1^T + c_{n2} \lambda_2^k x_2^T + \ldots + c_{nn} \lambda_n^k x_n^T
\end{pmatrix},
\]

Subsequent columns may be used to obtain subsidiary effects.

- States whose corresponding component value in this vector is large are, in a relative sense, far from the equilibrium position.

- States corresponding to component values that are relatively close together form a cluster, or a subset, of states.
Markov Random Walks on Graphs

The adjacency matrix A of a graph can be converted to a transition probability matrix P to generate a random walk on a graph.

$$P = D^{-1}A.$$

Since $L = D - A$ and $M = D + A$, we have

$$I - P = D^{-1}L \quad \text{and} \quad I + P = D^{-1}M$$

Property: If (λ, v) is an eigen-solution of $Pv = \lambda v$, then it is also an eigen-solution of the generalized eigenvalue problems

$$(1 - \lambda)Dv = Lv \quad \text{and} \quad (1 + \lambda)Dv = Mv.$$
Proof: Given an eigen-pair \((\lambda, v)\) such that \(Pv = \lambda v\), then, since \(P = D^{-1}A\) and \(L = D - A\), we have

\[
Pv = \lambda v \implies D^{-1}Av = \lambda v \implies D^{-1}(D - L)v = \lambda v
\]

\[
\implies Iv - D^{-1}Lv = \lambda v \implies (1 - \lambda)Dv = Lv
\]

(8)

A similar result holds for the Laplacian matrix \(M = D + A\).

The eigenvectors of the generalized eigenvalue problem \((1 - \lambda)Dv = Lv\) provide a heuristic solution for the minimum balanced cut on a graph. (Shi and Malik).

It therefore follows that the right eigenvectors of \(P\) also provide the same balanced cut solution.
Property: The eigenvalues of the probability matrix P derived from a random walk on a graph are real.

Proof: $P = D^{-1}A$ has a symmetric structure. Also, since

$$D^{1/2}PD^{-1/2} = D^{-1/2}AD^{-1/2},$$

P is similar to $D^{-1/2}AD^{-1/2}$, which is symmetric. Result follows.

This provides an alternative way to calculate the left- and right-hand eigenvectors of P, i.e., $P x_R = \lambda x_R$ and $P^T x_L = \lambda x_L$.

$$Px_R = \lambda x_R \quad \Rightarrow \quad D^{-1}Ax_R = \lambda x_R.$$

If we premultiply $D^{1/2}$ on both sides, we obtain

$$D^{-1/2}AD^{-1/2}(D^{1/2}x_R) = \lambda(D^{1/2}x_R).$$

$D^{1/2}x_R$ is an eigenvector of the symmetric matrix $D^{-1/2}AD^{-1/2}$.
Now consider \(x_L \). Since \(A \) is symmetric

\[
P^T x_L = \lambda x_L \quad \Rightarrow \quad AD^{-1} x_L = \lambda x_L.
\]

Premultiplying with \(D^{-1/2} \) on both sides gives

\[
D^{-1/2} AD^{-1/2} (D^{-1/2} x_L) = \lambda (D^{-1/2} x_L).
\]

\[\Rightarrow\] \(D^{-1/2} x_L \) is an eigenvector of the symmetric matrix \(D^{-1/2} AD^{-1/2} \).

Procedure:

Compute \((\lambda, v)\), the eigenvalue/vector of \(D^{-1/2} AD^{-1/2} \), and then set

\[
x_R = D^{-1/2} v \quad \text{and} \quad x_L = D^{1/2} v.
\]
If the Markov chain is ergodic, then spectral decomposition on P provides two clustering measures for graph nodes:

1. The balanced minimum cut (alternatively, maximum cohesion) — the eigenvector associated with the second smallest (positive) eigenvalue.

2. The “distance” from each state to the steady state — the eigenvector associated with the second largest modulus of eigenvalues (not necessarily positive).
\[\lambda_1 = 0.8852; \quad \lambda_2 = -0.9336. \]

\[
\begin{pmatrix}
1.0 & 1.0 \\
1.0 & 1.0 \\
1.0 & 1.0 \\
0.5411 & -6.7333 \\
-1.8138 & -29.3810 \\
-1.8138 & -29.3810 \\
-1.8138 & -29.3810 \\
-1.8138 & -29.3810 \\
-1.8138 & -29.3810 \\
-1.6058 & 27.4286
\end{pmatrix} \]

\[
\begin{pmatrix}
-0.5513 & -0.0340 \\
-0.5513 & -0.0340 \\
-0.5513 & -0.0340 \\
-0.5513 & -0.0340 \\
-0.5513 & -0.0340 \\
-0.2983 & 0.2292
\end{pmatrix}
\]

\[
\begin{pmatrix}
-0.5513 & -0.0340 \\
-0.5513 & -0.0340 \\
-0.5513 & -0.0340 \\
-0.5513 & -0.0340 \\
-0.5513 & -0.0340 \\
-0.2983 & 0.2292
\end{pmatrix}
\]

\[
\begin{pmatrix}
0.5411 & -6.7333 \\
-1.8138 & -29.3810 \\
-1.8138 & -29.3810 \\
-1.8138 & -29.3810 \\
-1.8138 & -29.3810 \\
-1.8138 & -29.3810 \\
-1.6058 & 27.4286
\end{pmatrix} \]
From the second clustering measure (using v_2):

(a) The first five elements in cluster 1 have relatively small modulus (states are closely linked) while others in cluster 2 have relatively large modulus (opposite structure).

(b) The value of vertex 5 is closer to cluster 2 while the value of vertex 11 is closer to cluster 1. Because vertex 5 and 11 have the possibility of transitioning to the other cluster in a single step; they are the connecting vertices between clusters.
Example 2:
Eigenvalues of P: $\lambda_1 = 1$, $\lambda_2 = 0.9328$, \ldots, $\lambda_{11} = -0.9653$.

$(1, 0.9328, 0.6281, 0, 0, 0, 0, -0.3216, -0.5539, -0.7201, -0.9653)$
Example 3: Courtois 8×8 transition probability matrix, P:

\[
\begin{pmatrix}
0.85 & 0.0 & 0.149 & 0.0009 & 0.0 & 0.00005 & 0.0 & 0.00005 \\
0.1 & 0.65 & 0.249 & 0.0 & 0.0009 & 0.00005 & 0.0 & 0.00005 \\
0.1 & 0.8 & 0.0996 & 0.0003 & 0.0 & 0.0 & 0.0001 & 0.0 \\
0.0 & 0.0004 & 0.0 & 0.7 & 0.2995 & 0.0 & 0.0001 & 0.0 \\
0.0005 & 0.0 & 0.0004 & 0.399 & 0.6 & 0.0001 & 0.0 & 0.0 \\
0.0 & 0.00005 & 0.0 & 0.0 & 0.00005 & 0.6 & 0.2499 & 0.15 \\
0.00003 & 0.0 & 0.00003 & 0.00004 & 0.0 & 0.1 & 0.8 & 0.0999 \\
0.0 & 0.00005 & 0.0 & 0.0 & 0.00005 & 0.1999 & 0.25 & 0.55
\end{pmatrix}
\]
• The eigenvalues of P are
\[
\begin{pmatrix}
1.0 & 0.9998 & 0.9985 & 0.7500 & 0.5501 & 0.4000 & 0.3007 & -0.1495 \\
\end{pmatrix}.
\]

• The right-hand eigenvectors v_2 and v_3 are both important.

\[
(v_2, v_3) = \begin{pmatrix}
-0.3536 & -0.4876 \\
-0.3536 & -0.4878 \\
-0.3536 & -0.4883 \\
-0.3536 & 0.3783 \\
-0.3536 & 0.3777 \\
0.3536 & 0.0073 \\
0.3536 & 0.0073 \\
0.3536 & 0.0073 \\
\end{pmatrix}.
\]