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Network Science

• Network science application areas

— rankings of soccer teams and players

— grocery placement

— spheres of influence, etc.

— social networking

• Markov chains and spectral clustering

— Google/Yahoo!

— Reverse engineering problem,

i.e., draw the Markov chain from the eigenvectors

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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Markov Chains and Spectral Clustering

Miroslav Fiedler “Algebraic Connectivity of Graphs, 1973”

— developed a spectral partitioning method to obtain the minimum cut

on an undirected graph (symmetric system).

The vector that results from the spectral decomposition — the

Fiedler vector — allows the nodes to be partitioned into two subsets.

Spectral decomposition is applied to the Laplacian matrix.

Alternative approach based on the dominant eigenvectors of a Markov

chain — and more broadly applicable to non-symmetric systems.

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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Spectral Graph Partitioning

• Graph partitioning/clustering:

— group the vertices of a connected graph into disjoint partitions.

• Objective:

— minimize the total cut weight

— maximize group cohesion.
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The Laplacian Matrix and Minimum Cut:

Lij =















∑

k wik, if i = j

−wij , if i 6= j, i and j are adjacent

0, otherwise,

1. L is symmetric, positive semi-definite. As such its eigenvalues are all

real and non-negative. Furthermore the eigenvectors of L constitute

a full set of n real and orthogonal vectors.

2. Le = 0, where e is a column vector whose elements are all equal to

1. Thus 0 is the smallest eigenvalue of L and e is its corresponding

eigenvector.

3. For any vector x, we have

xT Lx =
∑

{i,j}∈E

wij(xi − xj)
2. (1)
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Given a partition of V into V1 and V2, a partition vector p is defined as

pi =







+1, vertex i ∈ V1,

−1, vertex i ∈ V2.
(2)

Observe that pT p = n. Also, from Equation (1),

pT Lp =
∑

{i,j}∈E

wij(pi − pj)
2.

— edge weights within V1 and V2 are not counted,

— edges connecting partitions are multiplied by 4.

Note: cut(V1, V2) =
∑

i∈V1,j∈V 2 wij ; pT Lp = 4 cut(V1, V2). Hence

Raleigh Quotient:

pT Lp

pT p
=

1

n
· 4 cut(V1, V2). (3)

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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Maximum and minimum of the Rayleigh quotient can be obtained as the

largest and smallest eigenvalues of the Laplacian matrix L:

λmax = max
x6=0

xT Lx

xT x
and λmin = min

x6=0

xT Lx

xT x
, (4)

where x is the eigenvector of L corresponding to λmax and λmin.

Minimum value of the Rayleigh quotient is zero

— the smallest eigenvalue of L corresponding to the eigenvector e.

All the vertices of the graph are in the same set

— the trivial partition.

The second smallest eigenvalue of L, the Fiedler value,

provides the optimal value

Its corresponding eigenvector is the Fiedler vector.

N. Liu & W.J. Stewart Department of Computer Science N.C. State University



Markov Chains and Spectral Clustering October 2010 8

Example:
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Using the definition of the Laplacian matrix L, we have

L = −
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The eigenvalues and associated eigenvectors of L are given by

Eigenvalues =
“

0.0000 0.1876 1.9832 2.2582 2.5487 2.6222
”

,

Eigenvectors =

0

B

B

B

B

B

B

B

B

B

B

@

0.4082 −0.4080 0.0864 −0.4285 0.3379 0.6014

0.4082 −0.4401 0.1094 −0.0975 0.1841 −0.7644

0.4082 −0.3731 −0.1359 0.5501 −0.5755 0.2046

0.4082 0.3670 −0.5473 0.3544 0.5229 0.0091

0.4082 0.4514 0.7652 0.2025 0.0271 0.0483

0.4082 0.4027 −0.2778 −0.5810 −0.4966 −0.0990
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The Signless Laplacian Matrix and Maximum Association:

— to maximize the total edge weight within two clusters.

Mij =















∑

k wik, if i = j

+wij , if i 6= j, i and j are adjacent

0, otherwise,

Given a graph G = (V, E) and two clusters V1, V2 where V1 ∩ V2 = ∅

and V1 ∪ V2 = V , the cohesion/association is defined as

Cohesion(V1, V2) =





∑

i,j∈V1

wij +
∑

i,j∈V2

wij



 . (5)

We seek to maximize this quantity over all partitions of G.
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Given the partition vector p

pi =







+1, vertex i ∈ V1,

−1, vertex i ∈ V2,
=⇒ pT Mp =

∑

{i,j}∈E

wij(pi+pj)
2.

Notice that this time:

— edges connecting the two subsets V1 and V2 do not contribute

— edges within each cluster contribute 4 times their weight.

pT Mp

pT p
=

1

n
· 4 Cohesion(V1, V2)

The optimal partition is the one that maximizes this Raleigh quotient.

λmin ≤ pT Mp/pT p ≤ λmax

where λmin and λmax are the smallest and largest eigenvalues of M .

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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Properties of the signless Laplacian:

— all its eigenvalues are real and positive.

— the right-hand eigenvector corresponding to the largest eigenvalue is

the only eigenvector whose elements are all nonzero and positive.

The eigenvector of M corresponding to the second largest eigenvalue

provides node clustering information.

The second largest eigenvalue of the signless Laplacian provides a

quantitative evaluation of the total weight of edges within clusters.

The Laplacian L and signless Laplacian M can be obtained as

L = D − A and M = D + A (and hence M = 2D − L), where

— A is the adjacency matrix;

— D is a diagonal matrix with Dii =
∑

k wik.

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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Example:
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Using the definition of the signless Laplacian matrix M , we have

M =
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The eigenvalues and associated eigenvectors of M are given by

Eigenvalues =
“

0.6918 0.7581 0.8153 1.1043 2.8996 3.3309
”

,

Eigenvectors =

0

B

B

B

B

B

B

B

B

B

B

@

−0.3318 −0.2012 0.5223 0.4930 −0.1426 0.5597

0.1546 0.5654 −0.5136 0.1750 −0.1764 0.5752

0.1784 −0.4393 −0.0195 −0.6850 −0.1041 0.5429

−0.3566 0.5115 0.3130 −0.3852 0.5802 0.1677

−0.4591 −0.4137 −0.5880 0.1696 0.4830 0.1015

0.7045 −0.1182 0.1389 0.2828 0.6064 0.1509
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Indicators of State Clustering

The significance of subdominant, right-hand eigenvectors

System equilibrium is defined by the stationary probability vector.

Associate a real number with each state

— its “distance” from this equilibrium position.

Let w
(1)
i = (0, 0, . . . , 1, . . . , 0) =⇒ system is initially in state i.

Let x1, x2, . . . , xn be the left-hand eigenvectors of P

i.e., xT
j P = λjx

T
j for all j = 1, 2, . . . , n,

arranged into descending order

Writing w
(1)
i as a linear combination of these eigenvectors:

w
(1)
i = ci1x

T
1 + ci2x

T
2 + . . . + cinxT

n

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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w
(1)
i = ci1x

T
1 + ci2x

T
2 + . . . + cinxT

n

Repeated postmultiplication of w
(1)
i by P yields the steady-state.

w
(1)
i P = ci1x

T
1 P + ci2x

T
2 P + . . . + cinxT

nP (6)

= ci1x
T
1 + ci2λ2x

T
2 + . . . + cinλnxT

n = w
(2)
i , (7)

In general

w
(k+1)
i = ci1x

T
1 + ci2λ

k
2xT

2 + . . . + cinλk
nxT

n .

If the system initially starts in some other state j 6= i, we have

w
(k+1)
j = cj1x

T
1 + cj2λ

k
2xT

2 + . . . + cjnλk
nxT

n .

Only the constant coefficients differ

Observe what happens when λk
2 ≫ λk

l for l ≥ 3.

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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Considering all possible starting states:















w
(k+1)
1

w
(k+1)
2

...

w
(k+1)
n















=















c11x
T
1 + c12λ

k
2xT

2 + . . . + c1nλk
nxT

n

c21x
T
1 + c22λ

k
2xT

2 + . . . + c2nλk
nxT

n

...

cn1x
T
1 + cn2λ

k
2xT

2 + . . . + cnnλk
nxT

n















,

i.e.,

W (k+1) =















c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

. . .
...

cn1 cn2 . . . cnn





























1

λk
2

. . .

λk
n





























xT
1

xT
2

...

xT
n















≡ CΛkXT .

We now need to find C.

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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Recall that

W (1) = (w
(1)
1 , w

(1)
2 , . . . , w(1)

n )T =





















1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 0
...

...
. . .

...

0 0 0 · · · 1





















and that

w
(1)
i = ci1x

T
1 + ci2x

T
2 + . . . + cinxT

n , i = 1, 2, . . . , n.

Thus

W (1) = CXT ,

and since W (1) = I, we obtain

I = CXT ,

i.e., C = (XT )−1 = Y , the set of right-hand eigenvectors of P .

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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Therefore a relative distance of each state from the stationary probability

vector is obtained from the second column of the matrix C:














w
(k+1)
1

w
(k+1)
2

...

w
(k+1)
n















=















c11x
T
1 + c12λ

k
2xT

2 + . . . + c1nλk
nxT

n

c21x
T
1 + c22λ

k
2xT

2 + . . . + c2nλk
nxT

n

...

cn1x
T
1 + cn2λ

k
2xT

2 + . . . + cnnλk
nxT

n















,

Subsequent columns may be used to obtain subsidiary effects.

• States whose corresponding component value in this vector is large

are, in a relative sense, far from the equilibrium position.

• States corresponding to component values that are relatively close

together form a cluster, or a subset, of states.

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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Markov Random Walks on Graphs

The adjacency matrix A of a graph can be converted to a transition

probability matrix P to generate a random walk on a graph.

P = D−1A.

Since L = D − A and M = D + A, we have

I − P = D−1L and I + P = D−1M

Property: If (λ, v) is an eigen-solution of Pv = λv, then it is also an

eigen-solution of the generalized eigenvalue problems

(1 − λ)Dv = Lv and (1 + λ)Dv = Mv.

N. Liu & W.J. Stewart Department of Computer Science N.C. State University



Markov Chains and Spectral Clustering October 2010 21

Proof: Given an eigen-pair (λ, v) such that Pv = λv, then, since

P = D−1A and L = D − A, we have

Pv = λv ⇒ D−1Av = λv ⇒ D−1(D − L)v = λv

⇒ Iv − D−1Lv = λv ⇒ (1 − λ)Dv = Lv (8)

A similar result holds for the Laplacian matrix M = D + A.

The eigenvectors of the generalized eigenvalue problem (1 − λ)Dv = Lv

provide a heuristic solution for the minimum balanced cut on a graph.

(Shi and Malik).

It therefore follows that the right eigenvectors of P also provide the

same balanced cut solution.

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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Property: The eigenvalues of the probability matrix P derived from a

random walk on a graph are real.

Proof: P = D−1A has a symmetric structure. Also, since

D1/2PD−1/2 = D−1/2AD−1/2,

P is similar to D−1/2AD−1/2, which is symmetric. Result follows.

This provides an alternative way to calculate the left- and right-hand

eigenvectors of P, i.e., PxR = λxR and P T xL = λxL.

PxR = λxR ⇒ D−1AxR = λxR.

If we premultiply D1/2 on both sides, we obtain

D−1/2AD−1/2(D1/2xR) = λ(D1/2xR).

D1/2xR is an eigenvector of the symmetric matrix D−1/2AD−1/2.

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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Now consider xL. Since A is symmetric

P T xL = λxL ⇒ AD−1xL = λxL.

Premultiplying with D−1/2 on both sides gives

D−1/2AD−1/2(D−1/2xL) = λ(D−1/2xL).

=⇒ D−1/2xL is an eigenvector of the symmetric matrix D−1/2AD−1/2.

Procedure:

Compute (λ, v), the eigenvalue/vector of D−1/2AD−1/2, and then set

xR = D−1/2v and xL = D1/2v.

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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Clustering Techniques for Markov Chains

If the Markov chain is ergodic, then spectral decomposition on P

provides two clustering measures for graph nodes:

1. The balanced minimum cut (alternatively, maximum cohesion)

— the eigenvector associated with the second smallest (positive)

eigenvalue.

2. The “distance” from each state to the steady state

— the eigenvector associated with the second largest modulus of

eigenvalues (not necessarily positive).

N. Liu & W.J. Stewart Department of Computer Science N.C. State University



Markov Chains and Spectral Clustering October 2010 25

λ1 = 0.8852; λ2 = −0.9336.

(v1,v2) =

0
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; (v1,v2) =

0
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B

B

B

B
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B

B

B
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B

B

B
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−0.5513 −0.0340
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From the second clustering measure (using v2):

(a) The first five elements in cluster 1 have relatively small modulus

(states are closely linked) while others in cluster 2 have relatively

large modulus (opposite structure).

(b) The value of vertex 5 is closer to cluster 2 while the value of vertex

11 is closer to cluster 1. Because vertex 5 and 11 have the

possibility of transitioning to the other cluster in a single step; they

are the connecting vertices between clusters.

N. Liu & W.J. Stewart Department of Computer Science N.C. State University
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Example 2:
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Eigenvalues of P : λ1 = 1, λ2 = 0.9328, . . . , λ11 = −0.9653.

(1, 0.9328, 0.6281, 0, 0, 0, 0, −0.3216, −0.5539, −0.7201, −0.9653)

(v2,v3,v11) =
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NCD Markov Chains

Example 3: Courtois 8 × 8 transition probability matrix, P :

0
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B
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0.85 0.0 0.149 0.0009 0.0 0.00005 0.0 0.00005

0.1 0.65 0.249 0.0 0.0009 0.00005 0.0 0.00005

0.1 0.8 0.0996 0.0003 0.0 0.0 0.0001 0.0

0.0 0.0004 0.0 0.7 0.2995 0.0 0.0001 0.0

0.0005 0.0 0.0004 0.399 0.6 0.0001 0.0 0.0

0.0 0.00005 0.0 0.0 0.00005 0.6 0.2499 0.15

0.00003 0.0 0.00003 0.00004 0.0 0.1 0.8 0.0999

0.0 0.00005 0.0 0.0 0.00005 0.1999 0.25 0.55

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

N. Liu & W.J. Stewart Department of Computer Science N.C. State University



Markov Chains and Spectral Clustering October 2010 30

• The eigenvalues of P are
“

1.0 0.9998 0.9985 0.7500 0.5501 0.4000 0.3007 −0.1495
”

.

• The right-hand eigenvectors v2 and v3 are both important.
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