Markov Chains and Spectral Clustering

Ning Liu and William J. Stewart Department of Computer Science North Carolina State University Raleigh, NC 27695-8206

A presentation in honor of Dr. Guenter Haring for having attained that state of grace to which we all aspire - Professor Emeritus.

Network Science

- Network science application areas
- rankings of soccer teams and players
- grocery placement
- spheres of influence, etc.
- social networking
- Markov chains and spectral clustering
- Google/Yahoo!
- Reverse engineering problem,
i.e., draw the Markov chain from the eigenvectors

Markov Chains and Spectral Clustering

Miroslav Fiedler "Algebraic Connectivity of Graphs, 1973"

- developed a spectral partitioning method to obtain the minimum cut on an undirected graph (symmetric system).

The vector that results from the spectral decomposition - the Fiedler vector - allows the nodes to be partitioned into two subsets.

Spectral decomposition is applied to the Laplacian matrix.

Alternative approach based on the dominant eigenvectors of a Markov chain - and more broadly applicable to non-symmetric systems.

Spectral Graph Partitioning

- Graph partitioning/clustering:
- group the vertices of a connected graph into disjoint partitions.
- Objective:
- minimize the total cut weight
- maximize group cohesion.

The Laplacian Matrix and Minimum Cut:

$$
L_{i j}=\left\{\begin{array}{cl}
\sum_{k} w_{i k}, & \text { if } i=j \\
-w_{i j}, & \text { if } i \neq j, i \text { and } j \text { are adjacent } \\
0, & \text { otherwise }
\end{array}\right.
$$

1. L is symmetric, positive semi-definite. As such its eigenvalues are all real and non-negative. Furthermore the eigenvectors of L constitute a full set of n real and orthogonal vectors.
2. $L e=0$, where e is a column vector whose elements are all equal to 1. Thus 0 is the smallest eigenvalue of L and e is its corresponding eigenvector.
3. For any vector x, we have

$$
\begin{equation*}
x^{T} L x=\sum_{\{i, j\} \in E} w_{i j}\left(x_{i}-x_{j}\right)^{2} \tag{1}
\end{equation*}
$$

Given a partition of V into V_{1} and V_{2}, a partition vector p is defined as

$$
p_{i}= \begin{cases}+1, & \text { vertex } i \in V_{1} \tag{2}\\ -1, & \text { vertex } i \in V_{2}\end{cases}
$$

Observe that $p^{T} p=n$. Also, from Equation (1),

$$
p^{T} L p=\sum_{\{i, j\} \in E} w_{i j}\left(p_{i}-p_{j}\right)^{2}
$$

— edge weights within V_{1} and V_{2} are not counted,
— edges connecting partitions are multiplied by 4.
Note: $\operatorname{cut}\left(V_{1}, V_{2}\right)=\sum_{i \in V_{1}, j \in V 2} w_{i j} ; \quad p^{T} L p=4 \operatorname{cut}\left(V_{1}, V_{2}\right)$. Hence
Raleigh Quotient:

$$
\begin{equation*}
\frac{p^{T} L p}{p^{T} p}=\frac{1}{n} \cdot 4 \operatorname{cut}\left(V_{1}, V_{2}\right) \tag{3}
\end{equation*}
$$

Maximum and minimum of the Rayleigh quotient can be obtained as the largest and smallest eigenvalues of the Laplacian matrix L :

$$
\begin{equation*}
\lambda_{\max }=\max _{x \neq 0} \frac{x^{T} L x}{x^{T} x} \quad \text { and } \quad \lambda_{\min }=\min _{x \neq 0} \frac{x^{T} L x}{x^{T} x} \tag{4}
\end{equation*}
$$

where x is the eigenvector of L corresponding to $\lambda_{\max }$ and $\lambda_{\min }$.
Minimum value of the Rayleigh quotient is zero
— the smallest eigenvalue of L corresponding to the eigenvector e.
All the vertices of the graph are in the same set

- the trivial partition.

The second smallest eigenvalue of L, the Fiedler value, provides the optimal value

Its corresponding eigenvector is the Fiedler vector.

Example:

Using the definition of the Laplacian matrix L, we have

$$
\mathbf{L}=-\left(\begin{array}{rrrrrr}
-1.7 & 0.9 & 0.7 & 0 & 0 & 0.1 \\
0.9 & -1.7 & 0.8 & 0 & 0 & 0 \\
0.7 & 0.8 & -1.7 & 0.2 & 0 & 0 \\
0 & 0 & 0.2 & -1.6 & 0.6 & 0.8 \\
0 & 0 & 0 & 0.6 & -1.3 & 0.7 \\
0.1 & 0 & 0 & 0.8 & 0.7 & -1.6
\end{array}\right)
$$

The eigenvalues and associated eigenvectors of L are given by

$$
\begin{gathered}
\text { Eigenvalues }=\left(\begin{array}{rrrrrr}
0.0000 & 0.1876 & 1.9832 & 2.2582 & 2.5487 & 2.6222
\end{array}\right), \\
\text { Eigenvectors }=\left(\begin{array}{rrrrrr}
0.4082 & -0.4080 & 0.0864 & -0.4285 & 0.3379 & 0.6014 \\
0.4082 & -0.4401 & 0.1094 & -0.0975 & 0.1841 & -0.7644 \\
0.4082 & -0.3731 & -0.1359 & 0.5501 & -0.5755 & 0.2046 \\
0.4082 & 0.3670 & -0.5473 & 0.3544 & 0.5229 & 0.0091 \\
0.4082 & 0.4514 & 0.7652 & 0.2025 & 0.0271 & 0.0483 \\
0.4082 & 0.4027 & -0.2778 & -0.5810 & -0.4966 & -0.0990
\end{array}\right) .
\end{gathered}
$$

The Signless Laplacian Matrix and Maximum Association:

- to maximize the total edge weight within two clusters.

$$
M_{i j}=\left\{\begin{array}{cl}
\sum_{k} w_{i k}, & \text { if } i=j \\
+w_{i j}, & \text { if } i \neq j, i \text { and } j \text { are adjacent } \\
0, & \text { otherwise }
\end{array}\right.
$$

Given a graph $G=(V, E)$ and two clusters V_{1}, V_{2} where $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$, the cohesion/association is defined as

$$
\begin{equation*}
\operatorname{Cohesion}\left(V_{1}, V_{2}\right)=\left(\sum_{i, j \in V_{1}} w_{i j}+\sum_{i, j \in V_{2}} w_{i j}\right) . \tag{5}
\end{equation*}
$$

We seek to maximize this quantity over all partitions of G.

Given the partition vector p

$$
p_{i}=\left\{\begin{array}{ll}
+1, & \text { vertex } i \in V_{1}, \\
-1, & \text { vertex } i \in V_{2},
\end{array} \quad \Longrightarrow \quad p^{T} M p=\sum_{\{i, j\} \in E} w_{i j}\left(p_{i}+p_{j}\right)^{2}\right.
$$

Notice that this time:

- edges connecting the two subsets V_{1} and V_{2} do not contribute
- edges within each cluster contribute 4 times their weight.

$$
\frac{p^{T} M p}{p^{T} p}=\frac{1}{n} \cdot 4 \operatorname{Cohesion}\left(V_{1}, V_{2}\right)
$$

The optimal partition is the one that maximizes this Raleigh quotient.

$$
\lambda_{\min } \leq p^{T} M p / p^{T} p \leq \lambda_{\max }
$$

where $\lambda_{\min }$ and $\lambda_{\max }$ are the smallest and largest eigenvalues of M.

Properties of the signless Laplacian:

- all its eigenvalues are real and positive.
- the right-hand eigenvector corresponding to the largest eigenvalue is the only eigenvector whose elements are all nonzero and positive.

The eigenvector of M corresponding to the second largest eigenvalue provides node clustering information.

The second largest eigenvalue of the signless Laplacian provides a quantitative evaluation of the total weight of edges within clusters.

The Laplacian L and signless Laplacian M can be obtained as
$L=D-A$ and $M=D+A$ (and hence $M=2 D-L$), where

- A is the adjacency matrix;
- D is a diagonal matrix with $D_{i i}=\sum_{k} w_{i k}$.

Example:

Using the definition of the signless Laplacian matrix M, we have

$$
\mathbf{M}=\left(\begin{array}{cccccc}
1.7 & 0.9 & 0.7 & 0 & 0 & 0.1 \\
0.9 & 1.7 & 0.8 & 0 & 0 & 0 \\
0.7 & 0.8 & 1.7 & 0.2 & 0 & 0 \\
0 & 0 & 0.2 & 1.6 & 0.6 & 0.8 \\
0 & 0 & 0 & 0.6 & 1.3 & 0.7 \\
0.1 & 0 & 0 & 0.8 & 0.7 & 1.6
\end{array}\right)
$$

The eigenvalues and associated eigenvectors of M are given by

$$
\begin{gathered}
\text { Eigenvalues }=\left(\begin{array}{lllllll}
0.6918 & 0.7581 & 0.8153 & 1.1043 & 2.8996 & 3.3309
\end{array}\right), \\
\text { Eigenvectors }=\left(\begin{array}{rrrrrr}
-0.3318 & -0.2012 & 0.5223 & 0.4930 & -0.1426 & 0.5597 \\
0.1546 & 0.5654 & -0.5136 & 0.1750 & -0.1764 & 0.5752 \\
0.1784 & -0.4393 & -0.0195 & -0.6850 & -0.1041 & 0.5429 \\
-0.3566 & 0.5115 & 0.3130 & -0.3852 & 0.5802 & 0.1677 \\
-0.4591 & -0.4137 & -0.5880 & 0.1696 & 0.4830 & 0.1015 \\
0.7045 & -0.1182 & 0.1389 & 0.2828 & 0.6064 & 0.1509
\end{array}\right) .
\end{gathered}
$$

Indicators of State Clustering

The significance of subdominant, right-hand eigenvectors

System equilibrium is defined by the stationary probability vector.
Associate a real number with each state

- its "distance" from this equilibrium position.

Let $w_{i}^{(1)}=(0,0, \ldots, 1, \ldots, 0) \Longrightarrow$ system is initially in state i.
Let $x_{1}, x_{2}, \ldots, x_{n}$ be the left-hand eigenvectors of P

$$
\text { i.e., } \quad x_{j}^{T} P=\lambda_{j} x_{j}^{T} \quad \text { for all } j=1,2, \ldots, n
$$

arranged into descending order
Writing $w_{i}^{(1)}$ as a linear combination of these eigenvectors:

$$
w_{i}^{(1)}=c_{i 1} x_{1}^{T}+c_{i 2} x_{2}^{T}+\ldots+c_{i n} x_{n}^{T}
$$

$$
w_{i}^{(1)}=c_{i 1} x_{1}^{T}+c_{i 2} x_{2}^{T}+\ldots+c_{i n} x_{n}^{T}
$$

Repeated postmultiplication of $w_{i}^{(1)}$ by P yields the steady-state.

$$
\begin{align*}
w_{i}^{(1)} P & =c_{i 1} x_{1}^{T} P+c_{i 2} x_{2}^{T} P+\ldots+c_{i n} x_{n}^{T} P \tag{6}\\
& =c_{i 1} x_{1}^{T}+c_{i 2} \lambda_{2} x_{2}^{T}+\ldots+c_{i n} \lambda_{n} x_{n}^{T}=w_{i}^{(2)} \tag{7}
\end{align*}
$$

In general

$$
w_{i}^{(k+1)}=c_{i 1} x_{1}^{T}+c_{i 2} \lambda_{2}^{k} x_{2}^{T}+\ldots+c_{i n} \lambda_{n}^{k} x_{n}^{T}
$$

If the system initially starts in some other state $j \neq i$, we have

$$
w_{j}^{(k+1)}=c_{j 1} x_{1}^{T}+c_{j 2} \lambda_{2}^{k} x_{2}^{T}+\ldots+c_{j n} \lambda_{n}^{k} x_{n}^{T}
$$

Only the constant coefficients differ Observe what happens when $\lambda_{2}^{k} \gg \lambda_{l}^{k}$ for $l \geq 3$.

Considering all possible starting states:

$$
\left(\begin{array}{c}
w_{1}^{(k+1)} \\
w_{2}^{(k+1)} \\
\vdots \\
w_{n}^{(k+1)}
\end{array}\right)=\left(\begin{array}{c}
c_{11} x_{1}^{T}+c_{12} \lambda_{2}^{k} x_{2}^{T}+\ldots+c_{1 n} \lambda_{n}^{k} x_{n}^{T} \\
c_{21} x_{1}^{T}+c_{22} \lambda_{2}^{k} x_{2}^{T}+\ldots+c_{2 n} \lambda_{n}^{k} x_{n}^{T} \\
\vdots \\
c_{n 1} x_{1}^{T}+c_{n 2} \lambda_{2}^{k} x_{2}^{T}+\ldots+c_{n n} \lambda_{n}^{k} x_{n}^{T}
\end{array}\right)
$$

i.e.,
$W^{(k+1)}=\left(\begin{array}{cccc}c_{11} & c_{12} & \ldots & c_{1 n} \\ c_{21} & c_{22} & \ldots & c_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n 1} & c_{n 2} & \ldots & c_{n n}\end{array}\right)\left(\begin{array}{cccc}1 & & & \\ & \lambda_{2}^{k} & & \\ & & \ddots & \\ & & & \lambda_{n}^{k}\end{array}\right)\left(\begin{array}{c}x_{1}^{T} \\ x_{2}^{T} \\ \vdots \\ x_{n}^{T}\end{array}\right) \equiv C \Lambda^{k} X^{T}$

We now need to find C.

Recall that

$$
W^{(1)}=\left(w_{1}^{(1)}, w_{2}^{(1)}, \ldots, w_{n}^{(1)}\right)^{T}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

and that

$$
w_{i}^{(1)}=c_{i 1} x_{1}^{T}+c_{i 2} x_{2}^{T}+\ldots+c_{i n} x_{n}^{T}, \quad i=1,2, \ldots, n
$$

Thus

$$
W^{(1)}=C X^{T},
$$

and since $W^{(1)}=I$, we obtain

$$
I=C X^{T},
$$

i.e., $C=\left(X^{T}\right)^{-1}=Y$, the set of right-hand eigenvectors of P.

Therefore a relative distance of each state from the stationary probability vector is obtained from the second column of the matrix C :

$$
\left(\begin{array}{c}
w_{1}^{(k+1)} \\
w_{2}^{(k+1)} \\
\vdots \\
w_{n}^{(k+1)}
\end{array}\right)=\left(\begin{array}{c}
c_{11} x_{1}^{T}+c_{12} \lambda_{2}^{k} x_{2}^{T}+\ldots+c_{1 n} \lambda_{n}^{k} x_{n}^{T} \\
c_{21} x_{1}^{T}+c_{22} \lambda_{2}^{k} x_{2}^{T}+\ldots+c_{2 n} \lambda_{n}^{k} x_{n}^{T} \\
\vdots \\
c_{n 1} x_{1}^{T}+c_{n 2} \lambda_{2}^{k} x_{2}^{T}+\ldots+c_{n n} \lambda_{n}^{k} x_{n}^{T}
\end{array}\right)
$$

Subsequent columns may be used to obtain subsidiary effects.

- States whose corresponding component value in this vector is large are, in a relative sense, far from the equilibrium position.
- States corresponding to component values that are relatively close together form a cluster, or a subset, of states.

Markov Random Walks on Graphs

The adjacency matrix A of a graph can be converted to a transition probability matrix P to generate a random walk on a graph.

$$
P=D^{-1} A
$$

Since $L=D-A$ and $M=D+A$, we have

$$
I-P=D^{-1} L \quad \text { and } \quad I+P=D^{-1} M
$$

Property: If (λ, v) is an eigen-solution of $P v=\lambda v$, then it is also an eigen-solution of the generalized eigenvalue problems

$$
(1-\lambda) D v=L v \quad \text { and } \quad(1+\lambda) D v=M v
$$

Proof: Given an eigen-pair (λ, v) such that $P v=\lambda v$, then, since $P=D^{-1} A$ and $L=D-A$, we have

$$
\begin{align*}
P v= & \Rightarrow v \quad D^{-1} A v=\lambda v \quad \Rightarrow \quad D^{-1}(D-L) v=\lambda v \\
& \Rightarrow \quad I v-D^{-1} L v=\lambda v \quad \Rightarrow \quad(1-\lambda) D v=L v \tag{8}
\end{align*}
$$

A similar result holds for the Laplacian matrix $M=D+A$.

The eigenvectors of the generalized eigenvalue problem $(1-\lambda) D v=L v$ provide a heuristic solution for the minimum balanced cut on a graph. (Shi and Malik).

It therefore follows that the right eigenvectors of P also provide the same balanced cut solution.

Property: The eigenvalues of the probability matrix P derived from a random walk on a graph are real.
Proof: $P=D^{-1} A$ has a symmetric structure. Also, since

$$
D^{1 / 2} P D^{-1 / 2}=D^{-1 / 2} A D^{-1 / 2}
$$

P is similar to $D^{-1 / 2} A D^{-1 / 2}$, which is symmetric. Result follows.

This provides an alternative way to calculate the left- and right-hand eigenvectors of P , i.e., $\quad P x_{R}=\lambda x_{R} \quad$ and $\quad P^{T} x_{L}=\lambda x_{L}$.

$$
P x_{R}=\lambda x_{R} \quad \Rightarrow \quad D^{-1} A x_{R}=\lambda x_{R}
$$

If we premultiply $D^{1 / 2}$ on both sides, we obtain

$$
D^{-1 / 2} A D^{-1 / 2}\left(D^{1 / 2} x_{R}\right)=\lambda\left(D^{1 / 2} x_{R}\right)
$$

$D^{1 / 2} x_{R}$ is an eigenvector of the symmetric matrix $D^{-1 / 2} A D^{-1 / 2}$.

Now consider x_{L}. Since A is symmetric

$$
P^{T} x_{L}=\lambda x_{L} \quad \Rightarrow \quad A D^{-1} x_{L}=\lambda x_{L}
$$

Premultiplying with $D^{-1 / 2}$ on both sides gives

$$
D^{-1 / 2} A D^{-1 / 2}\left(D^{-1 / 2} x_{L}\right)=\lambda\left(D^{-1 / 2} x_{L}\right)
$$

$\Longrightarrow D^{-1 / 2} x_{L}$ is an eigenvector of the symmetric matrix $D^{-1 / 2} A D^{-1 / 2}$.

Procedure:

Compute (λ, v), the eigenvalue/vector of $D^{-1 / 2} A D^{-1 / 2}$, and then set

$$
x_{R}=D^{-1 / 2} v \quad \text { and } \quad x_{L}=D^{1 / 2} v .
$$

Clustering Techniques for Markov Chains

If the Markov chain is ergodic, then spectral decomposition on P provides two clustering measures for graph nodes:

1. The balanced minimum cut (alternatively, maximum cohesion)
— the eigenvector associated with the second smallest (positive) eigenvalue.
2. The "distance" from each state to the steady state - the eigenvector associated with the second largest modulus of eigenvalues (not necessarily positive).

$$
\lambda_{1}=0.8852 ; \quad \lambda_{2}=-0.9336
$$

$$
\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right)=\left(\begin{array}{rr}
1.0 & 1.0 \\
1.0 & 1.0 \\
1.0 & 1.0 \\
1.0 & 1.0 \\
0.5411 & -6.7333 \\
-1.8138 & -29.3810 \\
-1.8138 & -29.3810 \\
-1.8138 & -29.3810 \\
-1.8138 & -29.3810 \\
-1.8138 & -29.3810 \\
-1.6058 & 27.4286
\end{array}\right) ; \quad\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right)=\left(\begin{array}{rr}
-0.5513 & -0.0340 \\
-0.5513 & -0.0340 \\
-0.5513 & -0.0340 \\
-0.5513 & -0.0340 \\
-0.2983 & 0.2292 \\
1.0 & 1.0 \\
1.0 & 1.0 \\
1.0 & 1.0 \\
1.0 & 1.0 \\
1.0 & 1.0 \\
0.8853 & -0.9335
\end{array}\right)
$$

From the second clustering measure (using v_{2}):
(a) The first five elements in cluster 1 have relatively small modulus (states are closely linked) while others in cluster 2 have relatively large modulus (opposite structure).
(b) The value of vertex 5 is closer to cluster 2 while the value of vertex 11 is closer to cluster 1 . Because vertex 5 and 11 have the possibility of transitioning to the other cluster in a single step; they are the connecting vertices between clusters.

Example 2:

Eigenvalues of $P: \quad \lambda_{1}=1, \quad \lambda_{2}=0.9328, \ldots, \quad \lambda_{11}=-0.9653$.
$(1,0.9328,0.6281,0,0,0,0,-0.3216,-0.5539,-0.7201,-0.9653)$

$$
\left(\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{1 1}}\right)=\left(\begin{array}{rrr}
-0.2700 & 0.1801 & 0.3132 \\
-0.2895 & 0.2868 & -0.3245 \\
-0.2700 & 0.1801 & 0.3132 \\
-0.2142 & -0.0605 & -0.2802 \\
-0.0595 & -0.4743 & 0.1849 \\
-0.0638 & -0.7552 & -0.1916 \\
0.1116 & -0.0780 & -0.0637 \\
0.1578 & 0.0896 & 0.0264 \\
0.1700 & 0.1478 & -0.0211 \\
0.1578 & 0.0896 & 0.0264 \\
0.1601 & 0.0991 & 0.0083
\end{array}\right) .
$$

NCD Markov Chains

Example 3: Courtois 8×8 transition probability matrix, P :
$\left(\begin{array}{ccc|cc|ccc}0.85 & 0.0 & 0.149 & 0.0009 & 0.0 & 0.00005 & 0.0 & 0.00005 \\ 0.1 & 0.65 & 0.249 & 0.0 & 0.0009 & 0.00005 & 0.0 & 0.00005 \\ 0.1 & 0.8 & 0.0996 & 0.0003 & 0.0 & 0.0 & 0.0001 & 0.0 \\ \hline 0.0 & 0.0004 & 0.0 & 0.7 & 0.2995 & 0.0 & 0.0001 & 0.0 \\ 0.0005 & 0.0 & 0.0004 & 0.399 & 0.6 & 0.0001 & 0.0 & 0.0 \\ \hline 0.0 & 0.00005 & 0.0 & 0.0 & 0.00005 & 0.6 & 0.2499 & 0.15 \\ 0.00003 & 0.0 & 0.00003 & 0.00004 & 0.0 & 0.1 & 0.8 & 0.0999 \\ 0.0 & 0.00005 & 0.0 & 0.0 & 0.00005 & 0.1999 & 0.25 & 0.55\end{array}\right)$

- The eigenvalues of P are

$$
\left(\begin{array}{llllllll}
1.0 & 0.9998 & 0.9985 & 0.7500 & 0.5501 & 0.4000 & 0.3007 & -0.1495
\end{array}\right) .
$$

- The right-hand eigenvectors v_{2} and v_{3} are both important.

$$
\left(\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right)=\left(\begin{array}{rr}
-0.3536 & -0.4876 \\
-0.3536 & -0.4878 \\
-0.3536 & -0.4883 \\
\hline-0.3536 & 0.3783 \\
-0.3536 & 0.3777 \\
\hline 0.3536 & 0.0073 \\
0.3536 & 0.0073 \\
0.3536 & 0.0073
\end{array}\right)
$$

